3. On wM-Spaces. I

By Tadashi Ishif
Utsunomiya University
(Comm. by Kinjirô Kunugl, m. J. A., Jan. 12, 1970)

1. Introduction. The purpose of the present paper is to introduce the notion of $w M$-spaces, which is a generalization of M-spaces introduced by K. Morita [6], and to show some preperties of these spaces. For a sequence $\left\{\mathfrak{H}_{n}\right\}$ of open (or closed) coverings of a topological space X, we shall consider the following two conditions:
If $\left\{K_{n}\right\}$ is a decreasing sequence of non-empty subsets of X such $\left(\mathrm{M}_{1}\right)$ that $K_{n} \subset \operatorname{St}\left(x_{0}, \mathscr{U}_{n}\right)$ for each n and for some point x_{0} of X, then $\cap \bar{K}_{n} \neq \emptyset$.
If $\left\{K_{n}\right\}$ is a decreasing sequence of non-empty subsets of X such $\left(\mathrm{M}_{2}\right)$ that $K_{n} \subset \operatorname{St}^{2}\left(x_{0}, \mathfrak{V}_{n}\right)$ for each n and for some point x_{0} of X, then $\cap \bar{K} \neq \emptyset .{ }^{1)}$
A space X is an M-space if there exists a normal sequence $\left\{\mathfrak{H}_{n}\right\}$ of open coverings of X satisfying $\left(M_{1}\right)$. A space X is an M^{*}-space (M^{*}-space) if there exists a sequence $\left\{\tilde{\mathscr{F}}_{n}\right\}$ of locally finite (closure preserving) closed coverings of X satisfying (M_{1}) (T. Ishii [2], F. Siwiec and J. Nagata [8]). A space X is a $w \Delta$-space if there exists a sequence $\left\{\mathfrak{l}_{n}\right\}$ of open coverings of X satisfying (M_{1}) (C. Borges [1]). As is shown by K. Morita [7], there exists an M^{*}-space which is locally compact Hausdorff but not an M-space. Further, in our previous paper [3], we proved that a normal space X is an M-space if and only if it is an M^{*}-space.

Now we shall define $w M$-spaces including all M-spaces, M^{*}-spaces and M^{*}-spaces.

Definition. A space X is a $w M$-space if there exists a sequence $\left\{\mathfrak{U}_{n}\right\}$ of open coverings of X satisfying $\left(\mathrm{M}_{2}\right)$.

In the above definition, we may assume without loss of generality that \mathfrak{A}_{n+1} refines \mathfrak{A}_{n} for each n.

As a remarkable property of a $w M$-space, we can prove that every normal $w M$-space is strongly normal, that is, collectionwise normal and countably paracompact (Theorem 2.4). This result plays an important role in metrizability of $w M$-spaces in the next paper. Throughout this paper we assume at least T_{1} for every topological spaces unless otherwise specified.

[^0]
[^0]: 1) For each positive integer k, $\operatorname{St}^{k}\left(x_{0}, \mathfrak{N}_{n}\right)$ denotes the iterated star of a point x_{0} in each covering \mathscr{N}_{n}.
