29. Note on Covariance Operators of Probability Measures on a Hilbert Space

By D. KANNAN and A. T. BHARUCHA-REID*) Center for Research in Probability Wayne State University, Detroit, Michigan

(Comm. by Kinjirô KUNUGI, M. J. A., Feb. 12, 1970)

1. Introduction. Let $(\Omega, \mathcal{A}, \mu)$ be a probability measure space, and let $(\mathfrak{H}, \mathfrak{B})$ denote a measurable space where \mathfrak{H} is a real separable Hilbert space with inner product $\langle \cdot, \cdot \rangle$, and \mathcal{B} is the σ -algebra of Borel subsets of \mathfrak{H} . Let $x(\omega)$ denote a \mathfrak{H} -valued random variable, that is $\{\omega : x(\omega) \in B\} \in \mathcal{A}$ for all $B \in \mathcal{B}$; and let ν_x denote the probability measure (or distribution) on \mathfrak{H} induced by μ and x, that is $\nu_x = \mu \circ x^{-1}$, or $\nu_x(B) = \mu(x^{-1}(B))$ for all $B \in \mathcal{B}$. Let $\mathfrak{M}(\mathfrak{H})$ denote the space of all probability measures on \mathfrak{H} ; and let $\nu \in \mathfrak{M}(\mathfrak{H})$ be such that $\varepsilon_{\nu}\{||x||^2\}$ $=\int ||x||^2 d\nu < \infty$. Then the covariance operator S of ν is defined by the equation

$$\langle Sg,g \rangle = \int_{\mathfrak{H}} \langle f,g \rangle^2 d\nu(f)$$
 (1)

(cf. Grenander [1], Parthasarathy [4], Prokhorov [5]). A linear operator L in \mathfrak{H} is said to be an S-operator if it is a positive, selfadjoint operator with finite-trace; hence L is compact. S-operators play a fundamental role in the study of probability theory in Hilbert spaces (cf. [2, 3, 6, 10]). We recall that the function

$$\hat{\nu}(g) = \exp\{-1/2 \langle Sg, g \rangle\}, \ g \in \mathfrak{H},$$
(2)

is the *characteristic functional* (or Fourier transform) of a probability measure on \mathfrak{H} iff S is an S-operator. Also, if ν is the measure corresponding to $\hat{\nu}$, then $\varepsilon_{\nu}\{\|x\|^2\} < \infty$; and S is the covariance operator of ν . We also recall that a measure ν on \mathfrak{H} is normal (or Gaussian) iff $\hat{\nu}$ is of the form

$$\hat{\nu}(g) = \exp\{i\langle g_0, g \rangle - 1/2\langle Sg, g \rangle\},\tag{3}$$

where g_0 is a fixed element in \mathfrak{H} and S is an S-operator. The element g_0 is the expectation of ν , and S its covariance operator.

Let $L_2(\Omega, \mathcal{A}, \mu, \mathfrak{H}) = L_2(\Omega, \mathfrak{H})$ denote the space of \mathfrak{H} -valued random variables $x(\omega)$ such that $\varepsilon_{\mu}\{\|x\|^2\} < \infty$, with norm defined by (4)

$$[c]_2 = (\varepsilon_{\mu} \{ \|x\|^2 \})^{1/2}.$$

For any finite sequences $\{\xi_i\} \subset L_2(\Omega, \mathcal{A}, \mu) = L_2(\Omega)$ and $\{f_i\} \subset \mathfrak{H}$, put

$$\sum_{i=1}^{n} \xi_{i}(\omega) \odot f_{i} = \sum_{i=1}^{n} \xi_{i}(\omega) f_{i}(\text{mod } \mu).$$
(5)

^{*)} Research supported by National Science Foundation Grant No. GP-13741,