29. Note on Covariance Operators of Probability Measures on a Hilbert Space

By D. Kannan and A. T. Bharucha-Reid*)
Center for Research in Probability
Wayne State University, Detroit, Michigan

(Comm. by Kinjirô Kunugi, m. J. A., Feb. 12, 1970)

1. Introduction. Let $(\Omega, \mathcal{A}, \mu)$ be a probability measure space, and let $(\mathscr{F}, \mathscr{B})$ denote a measurable space where \mathfrak{S} is a real separable Hilbert space with inner product $\langle\cdot, \cdot\rangle$, and \mathscr{B} is the σ-algebra of Borel subsets of \mathfrak{S}. Let $x(\omega)$ denote a \mathscr{S}_{2}-valued random variable, that is $\{\omega: x(\omega) \in B\} \in \mathcal{A}$ for all $B \in \mathscr{B}$; and let ν_{x} denote the probability measure (or distribution) on $\mathscr{S}_{\mathcal{E}}$ induced by μ and x, that is $\nu_{x}=\mu \circ x^{-1}$, or $\nu_{x}(B)=\mu\left(x^{-1}(B)\right)$ for all $B \in \mathcal{B}$. Let $\mathfrak{M}\left(\mathfrak{S}_{\mathcal{E}}\right)$ denote the space of all probability measures on \mathscr{S}_{c}; and let $\nu \in \mathfrak{M}\left(\mathfrak{S}_{\mathcal{S}}\right)$ be such that $\varepsilon_{\nu}\left\{\|x\|^{2}\right\}$ $=\int\|x\|^{2} d \nu<\infty$. Then the covariance operator S of ν is defined by the equation

$$
\begin{equation*}
\langle S g, g\rangle=\int_{\mathfrak{F}}\langle f, g\rangle^{2} d \nu(f) \tag{1}
\end{equation*}
$$

(cf. Grenander [1], Parthasarathy [4], Prokhorov [5]). A linear operator L in \mathscr{S} is said to be an S-operator if it is a positive, selfadjoint operator with finite-trace; hence L is compact. S-operators play a fundamental role in the study of probability theory in Hilbert spaces (cf. $[2,3,6,10]$). We recall that the function

$$
\begin{equation*}
\hat{\mathcal{L}}(g)=\exp \{-1 / 2<S g, g\rangle\}, g \in \mathscr{S}, \tag{2}
\end{equation*}
$$

is the characteristic functional (or Fourier transform) of a probability measure on \mathfrak{S} iff S is an S-operator. Also, if ν is the measure corresponding to $\hat{\nu}$, then $\varepsilon_{\nu}\left\{\|x\|^{2}\right\}<\infty$; and S is the covariance operator of ν. We also recall that a measure ν on \mathscr{S} is normal (or Gaussian) iff $\hat{\nu}$ is of the form

$$
\begin{equation*}
\hat{\nu}(g)=\exp \left\{i\left\langle g_{0}, g\right\rangle-1 / 2\langle S g, g\rangle\right\} \tag{3}
\end{equation*}
$$

where g_{0} is a fixed element in \mathscr{S}_{5} and S is an S-operator. The element g_{0} is the expectation of ν, and S its covariance operator.

Let $L_{2}\left(\Omega, \mathcal{A}, \mu, \mathfrak{S}_{2}\right)=L_{2}\left(\Omega, \mathfrak{F}_{2}\right)$ denote the space of \mathfrak{S}_{2}-valued random variables $x(\omega)$ such that $\varepsilon_{\mu}\left\{\|x\|^{2}\right\}<\infty$, with norm defined by

$$
\begin{equation*}
[x]_{2}=\left(\varepsilon_{\mu}\left\{\|x\|^{2}\right\}\right)^{1 / 2} . \tag{4}
\end{equation*}
$$

For any finite sequences $\left\{\xi_{i}\right\} \subset L_{2}(\Omega, \mathcal{A}, \mu)=L_{2}(\Omega)$ and $\left\{f_{i}\right\} \subset \mathcal{S}_{c}$, put

$$
\begin{equation*}
\sum_{i=1}^{n} \xi_{i}(\omega) \odot f_{i}=\sum_{i=1}^{n} \xi_{i}(\omega) f_{i}(\bmod \mu) \tag{5}
\end{equation*}
$$

[^0]
[^0]: *) Research supported by National Science Foundation Grant No. GP-13741.

