62. Asymptotic Property of Solutions of Some Higher Order Hyperbolic Equations. I

By Kiyoshi MOCHIZUKI Yoshida College, Kyoto University (Comm. by Kinjirô KUNUGI, M. J. A., March 12, 1970)

Introduction. Let X be a complex Hilbert space with inner product (\cdot, \cdot) and norm $\|\cdot\|$. Let L be a selfadjoint (in general unbounded) operator on X satisfying

(1) $(Lf, f) \ge 0$ for all $f \in \mathcal{D}(L)$, where $\mathcal{D}(L)$ denotes the domain of L. We shall consider abstract "hyperbolic" equations of the form

(2)
$$\prod_{j=1}^{m} [\partial_t^2 + \alpha_j L] u(t) = 0 \ (t \in \mathbf{R}^1)$$

 $(\partial_t = d/dt)$ with initial data

(3) $\partial_t^{j-1} u|_{t=0} = \varphi_j \in \mathcal{D}(L^{(2m-j+1)/2}), j=1, 2, \cdots, 2m,$

where *m* is a positive integer and α_j are positive constants such that (4) $0 < \alpha_1 < \alpha_2 < \cdots < \alpha_m$.

In Mizohata [2], we know that there exists a unique solution of (2), (3) in the class $\bigcap_{0 \le j \le 2m} \mathcal{E}_t^{j}(\mathcal{D}(L^{(2m-j)/2}))^{1}$ ([2]; Theorem 5.1). In this note, we shall obtain an asymptotic property as $t \to \infty$ of the solution under the assumption that the spectrum of L is strongly absolutely continuous with respect to the Lebesgue measure. As will be seen, we shall generalize recent results of Shinbrot [4] and Goldstein [1], in which are treated the case of abstract wave equations (i.e., when m=1 in (2)).

First we consider the case when the origin 0 is in the resolvent set of L. In this case, applying the method developed by Mizohata [2], we can construct the explicit formula of the strongly continuous group $\{T_t; t \in \mathbb{R}^1\}$ of unitary operators in the space $\prod_{j=1}^{2m} \mathcal{D}(L^{(2m-j)/2})$ which assign to given initial data $(\varphi_1, \varphi_2, \cdots, \varphi_{2m})$ the data of corresponding solution of (2) at time t. For the general case, let $L_n = L + 2n^{-1}L^{1/2} + n^{-2}I$. Then, by the limit procedure developed by Goldstein [1], we can deduce the general case from the special case that L is invertible.

1. Assume first that there exists a positive constant c such that (5) $(Lf, f) \ge c ||f||^2$ for all $f \in \mathcal{D}(L)$.

¹⁾ $u(t) \in \mathcal{E}_t^j(X)$ means that u(t) is j times continuously differentiable in t with values in X.