58. Boundary Value Problems for Some Degenerate Elliptic Equations of Second Order with Dirichlet Condition

By Akira Nakaoka
(Comm. by Kinjirô Kunugi, m. J. A., March 12, 1970)

1. Introduction. Let Ω be a domain in R^{n} whose boundary is a smooth and compact hypersurface. We deal with the following differential operator defined in Ω :

$$
\begin{equation*}
A_{\rho}(x, D)=-\rho(r) \sum_{j, k=1}^{n} \frac{\partial}{\partial x_{j}}\left(a_{j k}(x) \frac{\partial}{\partial x_{k}}\right)+\sum_{j=1}^{n} b_{j}(x) \frac{\partial}{\partial x_{j}}+c(x) \tag{1.1}
\end{equation*}
$$

where r denots the distance from $x \in \bar{\Omega}$ to Γ, the boundary of Ω, and we assume that

$$
\begin{equation*}
\sum_{j, k=1}^{n} a_{j k}(x) \xi_{j} \xi_{k} \geqq \delta|\xi|^{2} \quad \text { for any real } n \text {-vector } \xi \quad\left(a_{j k}=\bar{a}_{k j}\right) \tag{1.2}
\end{equation*}
$$ and $\rho(t)\left(t \in \bar{R}_{+}^{1}\right)$ satisfies

1) $\rho(t) \in C^{0}\left(\bar{R}_{+}^{1}\right) \cap C^{2}\left(R_{+}^{1}\right)$ and $0 \leqslant \rho(t)$ with $\rho(t)=0$ only at $t=0$
2) $\rho(t)^{-1}$ is integrable in $(0, s)$ for any $s \geqq 0$, and $\rho^{\prime \prime}(t) \leqq 0$ near $t=0$
3) $\left|\rho^{\prime}(t)\right| \leqq C_{1} t^{\alpha-1}$ and $\left|\rho^{\prime \prime}(t)\right| \leqq C_{2} t^{\alpha-2}(0<\alpha<1)$ near $t=0$
4) $\int_{0}^{a} t^{2 \alpha-2} \int_{0}^{t} \rho(s)^{-1} d s d t$ and $\int_{0}^{a} \rho^{\prime}(t) \rho(t)^{-1} \int_{0}^{t} \rho(s)^{-1} d s d t$ are finite for any $a>0$ and if Ω is unbounded, we assume moreover
5) when $t \rightarrow \infty, 0<K \leqq \rho(t)$ and $\rho^{\prime}(t), \rho^{\prime \prime}(t)$ remain bounded.

If we take a function to be equal to t^{α} near $t=0$ as $\rho(t)$, we can see easily that it satisfies the above conditions.

For the coefficients of $A_{\rho}(x, D)$, we assume that $a_{j k}(x)$ and $b_{j}(x)$ are all in $\mathcal{B}^{1}(\bar{\Omega})$, and $c(x)$ in $C^{0}(\Omega)$ with $|c(x)| \leqq M\left|\rho^{\prime}(r)\right| \rho(r)^{-1}$ near Γ, and if Ω is unbounded, we assume that $c(x)$ remains bounded as $|x| \rightarrow \infty$.

Now let us introduce some Hilbert spaces in which we develop our arguments.

Definition 1.1. We say $u(x)$ belongs to $L^{2}\left(\Omega, \rho^{-1}\right)$ if and only if

$$
\begin{equation*}
\|u\|_{0, \rho-1}^{2}=\int_{\Omega}|u(x)|^{2} \rho(r)^{-1} d x \tag{1.3}
\end{equation*}
$$

is finite.
Definition 1.2. $u(x)$ is said to be in $H^{m}(\Omega, \rho)$, if and only if

$$
\begin{equation*}
\|u\|_{m, \rho}^{2}=\int_{\Omega}\left(\rho(r) \sum_{|\alpha|=2}\left|D^{\alpha} u\right|^{2}+|u|^{2}\right) d x \tag{1.4}
\end{equation*}
$$

is finite.
One of our main results is
Theorem 1.1. Under the conditions stated above, the equation

$$
\left\{\begin{array}{l}
A_{\rho}(x, D) u+\lambda u=f(x) \tag{1.5}\\
\left.u\right|_{\Gamma}=0
\end{array}\right.
$$

