58. Boundary Value Problems for Some Degenerate Elliptic Equations of Second Order with Dirichlet Condition

By Akira NAKAOKA

(Comm. by Kinjirô KUNUGI, M. J. A., March 12, 1970)

1. Introduction. Let Ω be a domain in \mathbb{R}^n whose boundary is a smooth and compact hypersurface. We deal with the following differential operator defined in Ω :

(1.1)
$$A_{\rho}(x,D) = -\rho(r) \sum_{j,k=1}^{n} \frac{\partial}{\partial x_{j}} \left(a_{jk}(x) \frac{\partial}{\partial x_{k}} \right) + \sum_{j=1}^{n} b_{j}(x) \frac{\partial}{\partial x_{j}} + c(x)$$

where r denots the distance from $x \in \overline{\Omega}$ to Γ , the boundary of Ω , and we assume that

(1.2) $\sum_{j,k=1}^{n} a_{jk}(x) \xi_{j} \xi_{k} \ge \delta |\xi|^{2} \quad \text{for any real } n \text{-vector } \xi \quad (a_{jk} = \bar{a}_{kj}),$ and $\rho(t) \ (t \in \bar{R}_{+}^{1}) \text{ satisfies}$

- 1) $\rho(t) \in C^0(\overline{R}^1_+) \cap C^2(R^1_+)$ and $0 \leq \rho(t)$ with $\rho(t) = 0$ only at t = 0
- 2) $\rho(t)^{-1}$ is integrable in (0, s) for any $s \ge 0$, and $\rho''(t) \le 0$ near t = 0
- 3) $|\rho'(t)| \leq C_1 t^{\alpha-1}$ and $|\rho''(t)| \leq C_2 t^{\alpha-2} (0 < \alpha < 1)$ near t=0

4) $\int_{0}^{a} t^{2\alpha-2} \int_{0}^{t} \rho(s)^{-1} ds dt$ and $\int_{0}^{a} \rho'(t) \rho(t)^{-1} \int_{0}^{t} \rho(s)^{-1} ds dt$ are finite for any a > 0 and if Ω is unbounded, we assume moreover

5) when $t \to \infty$, $0 < K \le \rho(t)$ and $\rho'(t)$, $\rho''(t)$ remain bounded.

If we take a function to be equal to t^{α} near t=0 as $\rho(t)$, we can see easily that it satisfies the above conditions.

For the coefficients of $A_{\rho}(x, D)$, we assume that $a_{jk}(x)$ and $b_{j}(x)$ are all in $\mathcal{B}^{1}(\overline{\Omega})$, and c(x) in $C^{0}(\Omega)$ with $|c(x)| \leq M |\rho'(r)| \rho(r)^{-1}$ near Γ , and if Ω is unbounded, we assume that c(x) remains bounded as $|x| \to \infty$.

Now let us introduce some Hilbert spaces in which we develop our arguments.

Definition 1.1. We say
$$u(x)$$
 belongs to $L^2(\Omega, \rho^{-1})$ if and only if
(1.3) $||u||^2_{0,\rho^{-1}} = \int_{\Omega} |u(x)|^2 \rho(r)^{-1} dx$

is finite.

Definition 1.2. u(x) is said to be in $H^m(\Omega, \rho)$, if and only if

(1.4)
$$\|u\|_{m,\rho}^{2} = \int_{\mathcal{Q}} (\rho(r) \sum_{|\alpha|=2} |D^{\alpha}u|^{2} + |u|^{2}) dx$$

is finite.

One of our main results is

(1.5) Theorem 1.1. Under the conditions stated above, the equation $\begin{cases} A_{\rho}(x, D)u + \lambda u = f(x) \\ u|_{r} = 0 \end{cases}$