57. A Construction for Idempotent Binary Relations

By B. M. SCHEIN

(Comm. by Kinjirô KUNUGI, M. J. A., March 12, 1970)

The problem of characterizing the idempotent elements of the semigroup \mathcal{R}_A of all binary relations over a set A is of interest, since the semigroup \mathcal{R}_A was a subject of numerous studies. This problem has been mentioned in [1]. Here we present a solution to this problem.

Let $\rho \in \mathcal{R}_A$. The set of all $a \in A$ such that $(a, a_1) \in \rho$ or $(a_1, a) \in \rho$ for some $a_1 \in A$ is called the *field* of ρ and is denoted as $pr\rho$. ρ may be considered as a binary relation over its field.

If $\alpha \subset A$, then Δ_{α} denotes the binary relation over A defined as follows: $(a_1, a_2) \in \Delta_{\alpha}$ iff $a_1 = a_2$ and $a_1 \in \alpha$.

A reflexive and transitive binary relation is called a *quasi-order* relation. An antisymmetric quasi-order relation is called an *order* relation.

Let ρ be a binary relation over a set I and $(A_i)_{i \in I}$ be a family of pairwise disjoint nonempty sets. Then the binary relation $\bigcup_{\substack{(i,j) \in \rho}} (A_i \times A_j)$ over the set $\bigcup_{i \in I} A_i$ is called an *inflation* of ρ . It is known that *infla*tions of order relations are quasi-order relations and every quasi-order relation is a uniquely determined inflation of a uniquely determined (up to isomorphism) order relation. Thus, the structure of quasi-order relations may be considered as known modulo order relations.

Let ρ be a quasi-order relation over a set A. Then $\varepsilon_{\rho} = \rho \cap \rho^{-1}$ is the symmetric part of ρ (here ρ^{-1} is the converse of ρ). Clearly, ε_{ρ} is an equivalence relation over A. An element $a \in A$ is called ρ -strict if the ε_{ρ} -class containing a is a singleton, i.e., if $(a, a_0), (a_0, a) \in \rho$ imply $a=a_0$. An element $a_1 \in A$ covers an element $a_2 \in A$ if $(a_1, a), (a, a_2) \in \rho$ imply $a=a_1$ or $a=a_2$ for every $a \in A$, and $(a_1, a_2) \in \rho$. Two elements a_1 and a_2 are called ρ -neighbors if a_1 covers a_2 or a_2 covers a_1 . A subset $\alpha \subset A$ is called ρ -permissible, if all elements of α are ρ -strict and α does not contain ρ -neighbors.

A binary relation σ is called a *pseudo-order* relation if $\sigma = \rho \setminus \Delta_{\alpha}$ where ρ is a quasi-order relation and α is a ρ -permissible subset. Here\is the set-theoretical difference. In this case ρ is called the *completion* of σ , and α is called the *defect* of σ . Since $\rho = \sigma \cup \Delta_A$ and $\alpha = A \setminus pr(\sigma \cap \Delta_A)$, the completion and defect of σ are uniquely determined. Notice that $pr\sigma$ need not be equal to A.

Theorem. A binary relation is idempotent if and only if it is a