54. Properties of Ergodic Affine Transformations of Locally Compact Groups. II

By Ryotaro SATO

Department of Mathematics, Josai University, Saitama

(Comm. by Kinjirô KUNUGI, M. J. A., March 12, 1970)

This is a continuation of the preceding paper [5]. The followings shall be proved below: (1) If G is a locally compact non-discrete abelian group which has an ergodic affine transformation S with respect to a Haar measure on G then G is compact. (2) An affine transformation S of a locally compact abelian group G which has a dense orbit in G is ergodic with respect to a Haar measure on G.

Theorem 1. If G is a locally compact non-discrete abelian group which has an ergodic affine transformation S(x) = a + T(x) with respect to a Haar measure μ on G then G is compact.

Proof. Let G_0 be the connected component of the identity 0 of G. Since T is *bi*-continuous by virtue of [5, Theorem 1], G_0 is invariant under T. Thus S induces an affine transformation S_1 of G/G_0 in the following way

 $S_1(x+G_0) = a + T(x) + G_0$ for $x+G_0 \in G/G_0$. It is clear that S_1 is ergodic with respect to a Haar measure μ_1 on G/G_0 .

Case I. Let G_0 be not open in G. Then G/G_0 is a locally compact totally disconnected non-discrete abelian group which has an ergodic affine transformation with respect to a Haar measure on G/G_0 . Hence G/G_0 is compact by [5, Theorem 3], from which it follows easily that G is compactly generated. Thus the well-known structure theorem for a locally compact, compactly generated abelian group (see [1, Theorem (9.8)]) implies that G is topologically isomorphic with $R^p imes Z^q$ $\times F$ for some nonnegative integers p and q and some compact abelian group F, where R is the real line and Z is the additive group of integers. But in the present case q=0, i.e., G is topologically isomorphic with $R^p \times F$. For if $q \neq 0$ then $G/(R^p \times F) = Z^q$ is not finite, which is impossible since $R^{p} \times F$ is an open subgroup of G. It is clear that F is invariant under T. So the ergodic affine transformation S(x) = a + T(x) of G induces an affine transformation $S_2(x+F) = a + T(x)$ +F of $G/F = R^p$ which is ergodic with respect to a Haar measure on $G/F = R^p$. By [3, Theorem 4], $G/F = R^p$ is compact, therefore G = F, i.e., G is compact.

Case II. Let G_0 be open in G. Then G/G_0 is a discrete abelian