51. A Generalization of the Riesz-Schauder Theory

By Akira KANEKO

(Comm. by Kunihiko KODAIRA, M. J. A., March 12, 1970)

We prove the following:

Theorem. Let S be an analytic space and let $s \rightarrow K(s)$ be an analytic map of S into the ring of compact operators on a Banach space X. Then those points s of S for which I + K(s) are not invertible form an analytic set in S.

This is a generalization of the following assertion, which is a part of the Riesz-Schauder theory.

Corollary 1. The spectrum of a compact operator is discrete.

Proof. We apply the theorem to I+sK and find that those s for which I+sK are non-invertible form an analytic set in the complex plane C, namely, discrete set of points or C itself. Because I+sK is invertible when s=0, the latter case does not occur.

In the same way we can prove the following proposition which has applications in scattering theory.

Corollary 2. Let K(s) be a family of compact operators depending analytically on a parameter s in an open subset U of the complex plane C. Then the set of all s for which I + K(s) are non-invertible is either equal to U itself, or discrete in U.

Proof of the Theorem.

We use a method given by Donin [1].

Since the concept of analytic subset is local, it suffices to consider a neighborhood of a fixed point $s_0 \in S$. Let N_0 and R_0 be the kernel and the range, respectively, of the map $I + K(s_0) : X \to X$. Since $K(s_0)$ is compact, N_0 is of finite dimension, R_0 is of finite co-dimension, and therefore both are topological direct summands.

Let $X=N_0\oplus Y$ and let P_0 be a continuous projection to R_0 . Then the map $Y(s)=P_0\circ [I+K(s)]|_Y: Y\to R_0$ gives, for $s=s_0$, an isomorphism $Y\cong R_0$. Since Y(s) is continuous in s, Y(s) is invertible for s sufficiently close to s_0 . So, we can construct a map $h(s): N_0\oplus R_0\to X$ which is defined by $h(s)(y,z)=\{I-Y(s)^{-1}\circ P_0\circ (I+K(s))\}y+Y(s)^{-1}z$, where (y,z) $\in N_0\oplus R_0$. When $s=s_0$, this is an isomorphism $N_0\oplus R_0\cong X$, so h(s) is an isomorphism for any s in some neighborhood of s_0 , and we have, for ssufficiently near s_0 , dim ker $(I+K(s))=\dim \ker \{(I+K(s))\circ h(s)\}$. On the other hand, we can show that ker $\{(I+K(s)\circ h(s)\}\subset N_0$. In fact, for $(y,z)\in N_0\oplus R_0$,