51. A Generalization of the Riesz-Schauder Theory

By Akira Kaneko
(Comm. by Kunihiko Kodaira, M. J. A., March 12, 1970)

We prove the following:
Theorem. Let S be an analytic space and let $s \rightarrow K(s)$ be an analytic map of S into the ring of compact operators on a Banach space X. Then those points s of S for which $I+K(s)$ are not invertible form an analytic set in S.

This is a generalization of the following assertion, which is a part of the Riesz-Schauder theory.

Corollary 1. The spectrum of a compact operator is discrete.
Proof. We apply the theorem to $I+s K$ and find that those s for which $I+s K$ are non-invertible form an analytic set in the complex plane \boldsymbol{C}, namely, discrete set of points or \boldsymbol{C} itself. Because $I+s K$ is invertible when $s=0$, the latter case does not occur.

In the same way we can prove the following proposition which has applications in scattering theory.

Corollary 2. Let $K(s)$ be a family of compact operators depending analytically on a parameter sin an open subset U of the complex plane C. Then the set of all s for which $I+K(s)$ are non-invertible is either equal to U itself, or discrete in U.

Proof of the Theorem.
We use a method given by Donin [1].
Since the concept of analytic subset is local, it suffices to consider a neighborhood of a fixed point $s_{0} \in S$. Let N_{0} and R_{0} be the kernel and the range, respectively, of the map $I+K\left(s_{0}\right): X \rightarrow X$. Since $K\left(s_{0}\right)$ is compact, N_{0} is of finite dimension, R_{0} is of finite co-dimension, and therefore both are topological direct summands.

Let $X=N_{0} \oplus Y$ and let P_{0} be a continuous projection to R_{0}. Then the map $Y(s)=\left.P_{0} \circ[I+K(s)]\right|_{Y}: Y \rightarrow R_{0}$ gives, for $s=s_{0}$, an isomorphism $Y \cong R_{0}$. Since $Y(s)$ is continuous in $s, Y(s)$ is invertible for s sufficiently close to s_{0}. So, we can construct a map $h(s): N_{0} \oplus R_{0} \rightarrow X$ which is defined by $h(s)(y, z)=\left\{I-Y(s)^{-1} \circ P_{0} \circ(I+K(s))\right\} y+Y(s)^{-1} z$, where (y, z) $\in N_{0} \oplus R_{0}$. When $s=s_{0}$, this is an isomorphism $N_{0} \oplus R_{0} \cong X$, so $h(s)$ is an isomorphism for any s in some neighborhood of s_{0}, and we have, for s sufficiently near s_{0}, dim $\operatorname{ker}(I+K(s))=\operatorname{dim} \operatorname{ker}\{(I+K(s)) \circ h(s)\}$. On the other hand, we can show that $\operatorname{ker}\left\{(I+K(s) \circ h(s)\} \subset N_{0}\right.$. In fact, for $(y, z) \in N_{0} \oplus R_{0}$,

