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47. On Homogeneous Complex Manifolds with Negative
Definite Canonical Hermitian Form

By Hirohiko SHIMA
Osaka University

(Comm. by Kenjiro SHODA, M. J. A., March 12, 1970)

Throughout this note, G denotes a connected Lie group and K is
a closed subgroup of G. We assume that G acts effectively on the
homogeneous space G/K. Suppose that G/K carries a G-invariant
complex structure I and a G-invariant volume element ». Then we
may define canonical hermitian form associated to I and v [2].

Theorem. Let G/K be a homogeneous complex manifold with
a G-invariant volume element. If the canonical hermitian form h of
G/K is negative definite, then G is o semisimple Lie group.

Proof. Let g be the Lie algebra of all left invariant vector fields
on G and f the subalgebra of g corresponding to K. We denote by I
the G-invariant complex structure tensor on G/K. Let =, be the dif-
ferential of the canonical projection 7 from G onto G/K at the identity
e and let I,, (resp. X,) be the value of I (resp. X € g) at n(e)=¢€’ (resp. e).
Koszul [2] proved that there exists a linear endomorphism J of g such
that for X,Yegand Wet

ﬂe(JX)e:Ie'(TceXe) (1)

Jict (2)

J’X=—Xmod ¥ (3)

[JX, Wl=J[X, W]lmod t (4)

VX, JY]=JJX, Y1+ J[X,JY]+[X, Y] mod ¢ (5)

Moreover, the canonical hermitian form # of G/K associated to the
G-invariant volume element is expressed as follows. Putting
n=n*h,

(X, Y)=%¢([JX, YD) (6)

for X, Y e g, where y(X)=trace of (ad(JX)—Jad(X)) on g/f for X eg.
As h is assumed to be negative definite, (X, X) <0 for any X e g, and
n(X,X)=0if and only if X ¢f. Therefore, putting w=—+, (g, ¥, J, w)
is a j-algebra in the sense of E. B. Vinberg, S. G. Gindikin and
I.I. Pjateckii-éapiro [4].

Now suppose that g is not a semisimple Lie algebra. Then there
is a non-zero commutative ideal r of g. Consider the J-invariant
subalgebra



