82. Notes on Modules. III

By Ferenc A. Szász

(Comm. by Kinjirô KUNUGI, M. J. A., April 13, 1970)

In this paper we discuss the Kertész' radical for modules, and among other we show that this radical fails to be a ring radical in the sense of Amitsur and Kurosh. We refer yet concerning this topic to our earlier papers [6], [7].

Following Kertész [3], for an arbitrary ring A and for any right A-module M, we consider the set

(1) $K(M) = \{X_j X \in M, X \in \Phi(M)\}$ where $\Phi(M)$ denotes the Frattini A-submodule of M. (That is, $\Phi(M)$ is the intersection of all maximal submodules of M, and $\Phi(M) = M$ for modules M having no maximal A-submodules.) Obviously, K(M) is an A-submodule of M. Calling an A-submodule N of M homoperfect, if (2) MA + N = Mholds, then (1) implies by Kertész [3], that K(M) coincides with the intersection of all homoperfect maximal A-submodules of M

Example. For a prime number p let A be the ring generated by the 3×3 matrices over the field of p elements:

$$(3) x = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, y = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Then A is a noncommutative ring with p^2 elements and with the multiplication:

		x	y
(4)	x	0	x
	y	0	y

By a routine calculation it can be verified that the principal right ideal $(y)_r$ of A is a homoperfect maximal right ideal, but $(y)_r$ is neither modular, nor quasimodular in A.

Furthermore, for the Kertész radical $K_r(A)$ of the A-right module A, one has by

(5) $(x)_r \cap (y)_r = 0$ obviously $K_r(A) = 0$, being also $(x)_r$ homoperfect and maximal in A. The Jacobson radical F(A) of A now coincides with $(x)_l = K_l(A)$, denoting $K_l(A)$ the left-right dual of $K_r(A)$

Therefore, this ring A has the property, that (6) $0 = K_r(A) \neq K_l(A) = F(A)$