81. Notes on Modules. II

By Ferenc A. SzÁsz
(Comm. by Kinjirô Kunugi, m. J. A., April 13, 1970)

Generalizing a well known important result (cf. Jacobson [1], Chapter IV, p. 93) for vector spaces, in our paper all twosided ideals of the total endomorphism ring $E(M)$ of a homogeneous completely reducible module M over an arbitrary ring A are determined. Our result is an English version of the earlier paper of the author [2].

Theorem. Let $E(M)$ be the total endomorphism ring of a homogeneous completely reducible right A-module M over an arbitrary ring A. Then for every nonzero twosided ideal g of $E(M)$ there exists an infinite cardinality \mathfrak{M} such that \mathcal{G} coincides with the set of all endomorphisms γ of M with rang $\gamma M<\mathfrak{M}$

Proof. We assume that rang $M \geqq \boldsymbol{K}_{0}$ over A, being $E(M)$ a simple total matrix ring over a division ring for the particular case

$$
\operatorname{rang} M<\boldsymbol{K}_{0} .
$$

1. Firstly we assert that if g is a twosided ideal of $E(M)$ with $\gamma_{2} \in g$ and
(1)
rang $\gamma_{1} M \leqq$ rang $\gamma_{2} M$
for an arbitrary $\gamma_{1} \in E(M)$, then $\gamma_{1} \in \mathcal{G}$
Namely, for $i=1$ and $i=2$ let N_{i} be the kernel of the endomorphism γ_{i} in M. Then there exists a completely reducible submodule K_{i} of M with $M=N_{i} \oplus K_{i}$. Then (1) implies (2)
rang $K_{1} \leqq$ rang K_{2}
If $K_{i}=\sum \oplus \underset{(i)}{ }\left\{_{\alpha_{j}}\right\}$, then by (2) and by the fact that M is homogeneous, there exists an endomorphism $\delta_{1} \in E(M)$ such that holds

$$
\begin{equation*}
\delta_{1} k_{(1)}=k_{(2)^{2}} \quad \text { and } \quad \delta_{1} N_{1}=0 \tag{3}
\end{equation*}
$$

Here α_{1}^{\prime} denotes an uniquely determined index α_{2} from Γ_{2}, and for $\alpha_{1} \neq \beta_{1}$ one has obviously $\alpha_{1}^{\prime} \neq \beta_{1}^{\prime}\left(\alpha_{1}, \beta_{1} \in \Gamma_{1} ; \alpha_{2_{1}} \beta_{2} \in \Gamma_{2}\right.$, being Γ_{2} the set of indices of fixed basis elements of K_{i}). Consequently, the restriction of δ_{1} on $\delta_{1} K_{1}$ has an inverse element δ_{1}^{-1}.

From an assumed linear connection

$$
\begin{equation*}
\sum_{j=1}^{n} \gamma_{2} \delta_{1} k_{(1)} k_{\alpha j} a_{j}=0 \quad\left(a_{j} \in A\right) \tag{4}
\end{equation*}
$$

follows $\gamma_{2} k^{*}=0$ for the element

$$
k^{*}=\sum_{j=1}^{n} \delta_{1} k_{(1)} k_{\alpha_{j}} a_{j} \in K_{2}
$$

Therefore $k^{*} \in N_{2} \cap K_{2}$, and $k^{*}=0$. There exists an inverse element

