81. Notes on Modules. II

By Ferenc A. Szász

(Comm. by Kinjirô KUNUGI, M. J. A., April 13, 1970)

Generalizing a well known important result (cf. Jacobson [1], Chapter IV, p. 93) for vector spaces, in our paper all twosided ideals of the total endomorphism ring E(M) of a homogeneous completely reducible module M over an arbitrary ring A are determined. Our result is an English version of the earlier paper of the author [2].

Theorem. Let E(M) be the total endomorphism ring of a homogeneous completely reducible right A-module M over an arbitrary ring A. Then for every nonzero twosided ideal \mathcal{J} of E(M) there exists an infinite cardinality \mathfrak{M} such that \mathcal{J} coincides with the set of all endomorphisms γ of M with rang $\gamma M < \mathfrak{M}$

Proof. We assume that rang $M \ge \aleph_0$ over A, being E(M) a simple total matrix ring over a division ring for the particular case

$$\operatorname{rang} M \,{<}\, {
m H}_0.$$

1. Firstly we assert that if \mathcal{J} is a twosided ideal of E(M) with $\gamma_2 \in \mathcal{J}$ and

(1) $\operatorname{rang} \gamma_1 M \leq \operatorname{rang} \gamma_2 M$

for an arbitrary $\gamma_1 \in E(M)$, then $\gamma_1 \in \mathcal{J}$

Namely, for i=1 and i=2 let N_i be the kernel of the endomorphism γ_i in M. Then there exists a completely reducible submodule K_i of M with $M=N_i \oplus K_i$. Then (1) implies

(2) rang $K_1 \leq \operatorname{rang} K_2$ If $K_i = \sum \bigoplus_{\substack{\{i\} \\ (i) \\ (i)}} \{k_{aj}\}$, then by (2) and by the fact that M is homogeneous, there exists an endomorphism $\delta_1 \in E(M)$ such that holds (3) $\delta_i k_j = k_j$ and $\delta_i N_i = 0$

$$\begin{array}{c} (3) \\ & \delta_1 k_{\alpha_1} = k_{\alpha'_1} \\ & (1) \\ & (2) \\ \end{array} \text{ and } \quad \delta_1 N_1 = 0$$

Here α'_1 denotes an uniquely determined index α_2 from Γ_2 , and for $\alpha_1 \neq \beta_1$ one has obviously $\alpha'_1 \neq \beta'_1 (\alpha_1, \beta_1 \in \Gamma_1; \alpha_{2_1}\beta_2 \in \Gamma_2)$, being Γ_2 the set of indices of fixed basis elements of K_i). Consequently, the restriction of δ_1 on $\delta_1 K_1$ has an inverse element δ_1^{-1} .

From an assumed linear connection

$$(4) \qquad \qquad \sum_{j=1}^{n} \gamma_2 \delta_1 k_{\alpha_j} \alpha_j = 0 \quad (\alpha_j \in A)$$

follows $\gamma_2 k^* = 0$ for the element

$$k^* = \sum_{j=1}^n \delta_1 k_{\alpha_j} a_j \in K_2$$

Therefore $k^* \in N_2 \cap K_2$, and $k^*=0$. There exists an inverse element