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1. In this paper, we shall concern with a polar decomposition of
an operator in avon Neumann algebra in a connection with an extreme
point of the unit ball of the algebra. Substantially, we shall show
that an operator of a yon Neumann algebra is the product of an ex-
treme point of the unit ball and a positive operator in the algebra
(Theorem 1).

As a few applications, we shall have a characterization of a finite
yon Neumann algebra and that every element of the unit ball of avon
Neumann algebra is the average of two extreme points.

2. Let q( be a Hilbert space. By an operator we shall mean a
bounded linear operator acting on r. For a C*-algebra of opera-
tors, by () we shall mean the unit ball of . An extreme point
of () will be called simply an extreme point of . Following after
Halmos [5; p. 63] if U and V are partial isometries, write U<=V in
case V agrees with U on the initial space of U.

Let _L(qo be the algebra of all operators on q(, then every element
in (q() is the product of a maximal partial isometry (with respect
to the above partial order) and a positive operator [5; p. 69]. A max-
imal partial isometry is an isometry or a co-isometry [5; p. 64]. By
Kadison [6], for a factor, a necessary and sufficient condition that a
partial isometry be an extreme point of the unit ball is that the partial
isometry be an isometry or a co-isometry. Therefore, every operator
on q( has a representation as the product of an extreme point of _L’(q()
and a positive operator.

Furthermore, let be a finite yon Neumann algebra on q(. It is
essentially known that any element in is the product of a unitary
elment and a positive element of , and in finite factors, this fact is
used repeatedly (e.g. [1], [4]). In a finite von Neumann algebra, the
set of all extreme points of the unit ball is that of all unitary operators
(cf. [2], [7], [10]). Therefore, any element of is the product of an
extreme point and a positive element.

We shall show the above fact is also true for a general von Neu-
mann algebra"

Theorem 1o Let be a yon Neumann algebra. Then any ele-


