101. A Remark on the S-Equation for Branching Processes

By Stanley SAWYER*)

Brown University, Providence, R. I., U.S.A.

(Comm. by Kinjirô KUNUGI, M. J. A., May 12, 1970)

Let $\{x_t, \mathcal{B}_t\}$ be a right-continuous strong Markov process on a metric space D. Assume $\{\phi_t\}$ is a finite increasing additive functional of $\{x_t\}$, and let $\{\pi_n(a, E)\}$ be a series of substochastic kernels for $a \in D$, $E \subseteq D^n$ satisfying $\sum \pi_n(a, D^n) = 1$.¹⁾ Consider the branching process $\{z_t\}$ in D (actually in $X = \bigcup_{0}^{\infty} D^n$) determined by $\{x_t\}$, the branching rate $d\phi_t$ (thus if $\phi_t = \int_0^t V(x_s) d_s$, an individual particle branches with probability $V(x_t) dt$ in time dt) and position distributions $\pi_n(x_t, E)$ of the offspring of a particle which does branch. (See [1]-[5]; we use the notation of [4].) The transition function $\overline{P}(t, x, E)$ of $\{z_t\}$ in X can be determined from the transition function P(t, a, A) of $\{x_t\}$ by either a linear equation in X or a non-linear equation in D. The linear equation is the so-called "M-equation".

(1)
$$\bar{T}_{t}h(x) = E_{x}(h(z_{t})\chi_{[\beta>t]}) + E_{x}\left(\chi_{[\beta\leq t]}\int_{\mathcal{X}}\bar{T}_{t-\beta}h(y)\mu(w,dy)\right)$$

for bounded Borel functions h(x) on X, where $\bar{T}_t h(x) = \int h(y) \bar{P}(t, x, dy)$ and β is the first branching time $(P_a(\beta > t/\mathcal{B}_{\infty}) = \exp(-\phi_t)$ in D). Alternately, for $a \in D$, we have the "S-equation" ([5]) (2) $\bar{T}_t \hat{f}(a) = E_a(f(x_t)\chi_{[s>t]})$

 $+E_a\left(\chi_{[\beta\leq t]}\sum_{0}^{r}\int_{D^r}\prod_{1}^{r}\bar{T}_{t-\beta}\hat{f}(b_i)\pi_r(x_{\beta},db)\right)$

where f(a) is a Borel function on D, $|f(a)| \leq 1$, and $\hat{f}(x) = \prod_{1}^{r} f(a_i)$ for $x = (a_1, a_2, \dots, a_r), f(\partial) = 1$. In particular, if new particles are always born at the same location where their parent branches, the non-linearity in (2) is of power series type. As is proven in [2, III], the semi-group $\{\bar{T}_t\}$ can be obtained from either equation.²⁾ I.e., if $h(x) \geq 0$ (or $f(a) \geq 0$), then $\bar{T}_t h(x)$ (or $\bar{T}_t \hat{f}(a)$) is the minimal non-

^{*)} The author was supported in part by NSF Grant GP-8975.

¹⁾ Here D^n is the usual *n*-fold Cartesian product of D with itself, and $D^0 = \{\partial\}, \ \partial \in D$, where $\pi_0(a, \{\partial\}) = \pi_0(a)$ refers to x_t dying childless.

²⁾ More exactly, in the case of (2), only those properties of the model which are permutation invariant; see the remark.