98. A Convergence Theorem in Measurable Function Spaces of Concave Type^{*)}

By Shozo KOSHI Mathematical Institute, Okayama University

(Comm. by Kinjirô KUNUGI, M. J. A., May 12, 1970)

1. L. Schwarz has shown that in $L^p(\Omega \cdot \mu)$ $(0 \le p < +\infty)$ for every *C*-sequence its sum is convergent [3]. In this note, we shall show that this fact is true in some type of measurable function spaces. Let *L* be a measurable function space (topological vector space) with a linear topology \mathcal{T} . A sequence $f_n \in L(n=1,2,\cdots)$ is called *C*-sequence in *L* if $\sum_{n=1}^{\infty} c_n f_n$ converges with respect to \mathcal{T} for all sequences of real numbers $\{c_n\}$ which tend to 0.

Now, we shall consider some class of function spaces which includes $L^{p}(0 \le p \le 1)$.

2. Let Ω be a measure space with measure μ where Ω is a union of mutually disjoint measurable set $A_{\lambda}(\lambda \in \Lambda)$ with finite measure and every measurable set of finite measure is contained in at most countable union from $A_{\lambda}(\lambda \in \Lambda)$. Let \mathcal{M} be the set of all measurable functions.

Let *m* be a functional on \mathcal{M} with the following conditions.

- (1) $0 \leq m(f) \leq +\infty$ for $f \in \mathcal{M}$.
- (2) $|f| \leq |g| \ a.e. \Rightarrow m(f) \leq m(g).$
- (3) m(f)=0 if and only if f=0 a.e.
- (4) $\inf(f,g)=0$ *i.e.* $f \cap g=0 \Rightarrow m(f+g)=m(f)+m(g)$.
- (5) $0 \leq f_n \uparrow$, $\sup_n m(f_n) < +\infty \Rightarrow m(f) = \sup_n m(f_n)$ for $f = \sup_n f_n$.
- (6) $m(\alpha_n f) \rightarrow 0$ as $\alpha_n \rightarrow 0$ for every f with $m(f) < +\infty$.
- (7) $m(\alpha f) \ge \alpha m(f)$ for $1 \ge \alpha \ge 0$.
- (8) $m(\chi_E) < +\infty$ for every characteristic function χ_E of E with $\mu(E) < +\infty$.

We shall consider a subset of $\mathcal{M}: L_m = \{f \in \mathcal{M}, m(f) < +\infty\}$. We

shall identify f and g if f = g a.e. in L_m . If $m(f) = \int |f|^p d\mu (0 ,$ $then <math>L_m$ coincides with L^p . If $\Omega = \bigcup_{i=1}^{\infty} A_i$ (disjoint union) $(0 < \mu(A_i))$ $< +\infty$ for all $i=1, 2, \cdots$) and $m(f) = \sum_{i=1}^{\infty} \frac{1}{2^i \mu(A_i)} \int_{A_i} \frac{|f|}{1+|f|} d\mu$, then L_m is the space of all measurable functions (essentially finite). In this case, (5) must be changed.

^{*)} Dedicated to Professor Hidegoro Nakano on his 60th birthday.