122. On Quasi-Souslin Space and Closed Graph Theorem

By Michiko NAKAMURA

(Comm. by Kinjirô KUNUGI, M. J. A., June 12, 1970)

L. Schwartz defined *Souslin space* as any continuous image of a complete separable metric space and a generalized closed graph theorem is obtained in [1] and [2] for this class of spaces. Here we consider a slightly wider class of topological spaces, namely *quasi-Souslin spaces*, and prove a closed graph theorem extending the method in [2].

A filter Φ is said to be *S*-filter if Φ has a countable basis $\{S_n\}$ such that $\bigcap S_n = \phi$.

A Housdorff topological space E is called a *quasi-Souslin space*, if there exists a sequence of S-filters Φ_n $(n=1,2,\cdots)$ such that every ultrafilter Ψ with $\Psi \supset \Phi_n$ $(n=1,2,\cdots)$ converges in E. In the sequel Φ_n are called *defining filters for* E.

Let A be a subset of a set E and Φ a filter in E. We say that A is *disjoint from* Φ if there is B in Φ such that $A \cap B = \phi$. If A is not disjoint from Φ , we denote the filter $\{A \cap B | B \in \Phi\}$ in A by Φ_A . We identify the filter Φ_A in A with the filter Φ in E if $A \in \Phi$. Let φ be a mapping from a set E into a set F and Φ, Ψ filters in E, F respectively. $\varphi(\Phi)$, the *image of* Φ by φ , is defined as the filter generated by $\{\varphi(A) | A \in \Phi\}$. When $\varphi(E)$ is not disjoint from $\Psi, \varphi^{-1}(\Psi)$, the *inverse image of* Ψ by φ is defined as the filter generated by $\{\varphi^{-1}(A) | A \in \Psi\}$.

A subset A of topological space E is said to be everywhere second category in E, if any non-void intersection $U \cap A$ with an open set U in E is second category. As well known, if A is second category, the set O(A) of all the elemets x in E for which $A \cap V$ is second category for every neighbourhood V of x is not empty and $O(A) \cap A$ is everywhere second category in E.

First we show that the class of quasi-Souslin spaces, as in the case of Souslin spaces, is closed by the following operations:

(1) The image $E = \varphi(F)$ of a quasi-Souslin space F by a continuous mapping φ is quasi-Souslin.

(2) The closed subspace E of a quasi-Souslin space F is quasi-Souslin.

(3) The product space $E = \prod_{n} E_{n}$ of quasi-Souslin spaces E_{n} (n=1,2,...) is quasi-Souslin.

(4) The inductive limit E of quasi-Souslin spaces E_n $(n=1,2,\cdots)$ is quasi-Souslin,