No. 6]

121. Paracompactifications of M-spaces

By Kiiti Morita

Department of Mathematics, Tokyo University of Education and University of Pittsburgh

(Comm. by Kinjirô KUNUGI, M. J. A., June 12, 1970)

By a space we shall always mean a completely regular Hausdorff space unless otherwise specified.

1. Let X be a space with a uniformity Φ agreeing with the topology of X; that is, Φ is a family of open coverings of X satisfying conditions (a) to (c) below, where for coverings \mathfrak{U} and \mathfrak{B} of X we mean by $\mathfrak{U} < \mathfrak{B}$ that \mathfrak{B} is a refinement of \mathfrak{U} .

(a) If $\mathfrak{U}, \mathfrak{B} \in \Phi$, then there exists $\mathfrak{W} \in \Phi$ such that $\mathfrak{U} < \mathfrak{W}$ and $\mathfrak{B} < \mathfrak{W}$.

(b) If $\mathfrak{U} \in \Phi$, there is $\mathfrak{V} \in \Phi$ which is a star-refinement of \mathfrak{U} .

(c) $\{\operatorname{St}(x,\mathfrak{U}) | \mathfrak{U} \in \Phi\}$ is a basis of neighborhoods at each point x of X.

Let $\{\Phi_{\lambda} | \lambda \in A\}$ be the totality of those normal sequences which consist of open coverings of X contained in Φ . Let $\Phi_{\lambda} = \{\mathfrak{U}_{\lambda i} | i = 1, 2, \dots\}$, where $\mathfrak{U}_{\lambda i}$ is a star-refinement of $\mathfrak{U}_{\lambda,i-1}$ for $i=2,3,\dots$. As in [1], we denote by (X, Φ_{λ}) the topological space obtained from X by taking $\{\operatorname{St}(x, \mathfrak{U}_{\lambda i}) | i = 1, 2, \dots\}$ as a basis of neighborhoods at each point x of X. Let X/Φ_{λ} be the quotient space obtained from (X, Φ_{λ}) by defining those two points x and y equivalent for which $y \in \operatorname{St}(x, \mathfrak{U}_{\lambda i})$, for $i=1, 2, \dots$. Then there is a canonical map $\varphi_{\lambda} : X \to X/\Phi_{\lambda}$ which is continuous, and X/Φ_{λ} is metrizable.

Now we shall define a partial order in $\{\Phi_{\lambda} | \lambda \in \Lambda\}$. If each member of Φ_{λ} has a refinement in Φ_{μ} , we write $\Phi_{\lambda} < \Phi_{\mu}$. Then, if $\Phi_{\lambda} < \Phi_{\mu}$, there exists a continuous map $\varphi_{\lambda}^{\mu} : X/\Phi_{\mu} \rightarrow X/\Phi_{\lambda}$ such that $\varphi_{\lambda} = \varphi_{\lambda}^{\mu} \circ \varphi_{\mu}$, and $\{X/\Phi_{\lambda}; \varphi_{\lambda}^{\mu}\}$ is an inverse system of metrizable spaces. Let us set $\mu_{\Phi}(X) = \lim X/\Phi_{\lambda}$.

For any point x of X, let us put $\varphi(x) = \{\varphi_{\lambda}(x)\}$. Then $\varphi: X \to \mu_{\varphi}(X)$ is a homeomorphism into.

In case every Cauchy family $\{C_r\}$ of X with respect to Φ which has the countable intersection property is non-vanishing (that is, $\cap \overline{C}_r \neq \phi$), we say that X is *weakly complete* with respect to Φ .

Theorem 1. The map $\varphi: X \to \mu_{\phi}(X)$ is onto if and only if X is weakly complete with respect to Φ .

In case Φ is the finest uniformity (that is, Φ consists of all normal open coverings of X), we write $\mu(X)$ instead of $\mu_{\Phi}(X)$. In this case