121. Paracompactifications of M.spaces

By Kiiti MORITA

Department of Mathematics, Tokyo University of Education and University of Pittsburgh

(Comm. by Kinjirô KUNUGI, M. J. A., June 12, 1970)

By a space we shall always mean a completely regular Hausdorff space unless otherwise specified.

1. Let X be a space with a uniformity Φ agreeing with the topology of X; that is, Φ is a family of open coverings of X satisfying conditions (a) to (c) below, where for coverings 11 and \mathfrak{B} of X we mean by $11 < \mathcal{D}$ that \mathcal{D} is a refinement of 11.
(a) If 11, $\mathcal{D} \in \Phi$, then there ex-

If 1I, $\mathfrak{B} \in \Phi$, then there exists $\mathfrak{B} \in \Phi$ such that $11 \lt \mathfrak{B}$ and $\mathfrak{B} \langle \mathfrak{B}.$
(b) If $\mathfrak{U} \in \Phi$, there is $\mathfrak{B} \in \Phi$ which is a star-refinement of $\mathfrak{U}.$

(c) $\{St(x, 11) | 11 \in \Phi\}$ is a basis of neighborhoods at each point x of X.

Let $\{\phi_{\lambda} | \lambda \in \Lambda\}$ be the totality of those normal sequences which consist of open coverings of X contained in Φ . Let $\Phi_i = {\{\mathfrak{U}_{i\ell}\}}_i = 1, 2, \cdots$, $\Phi_1 = \{ \mathfrak{U}_{1i} | i = 1, 2, \cdots \},$
 \mathfrak{H}, \cdots As in [1], we
 \mathfrak{H} from X by taking
 \mathfrak{G} at each point x of where $\mathfrak{U}_{\lambda i}$ is a star-refinement of $\mathfrak{U}_{\lambda,i-1}$ for $i=2,3,\cdots$. As in [1], we denote by (X, ϕ) the topological space obtained from X by taking ${\rm St}(x, \mathfrak{U}_n)|i=1, 2, \cdots$ as a basis of neighborhoods at each point x of X. Let X/ϕ be the quotient space obtained from (X, ϕ) by defining those two points x and y equivalent for which $y \in St(x, \mathfrak{U}_n)$, for $i=1,2,\cdots$. Then there is a canonical map $\varphi_i:X\rightarrow X/\varPhi_i$ which is continuous, and X/ϕ is metrizable.

Now we shall define a partial order in $\{\Phi_{\lambda} | \lambda \in \Lambda\}$. If each member of Φ_{λ} has a refinement in Φ_{μ} , we write $\Phi_{\lambda} < \Phi_{\mu}$. Then, if $\Phi_{\lambda} < \Phi_{\mu}$, there exists a continuous map $\varphi_i^* : X/\varPhi_{\mu} \to X/\varPhi_{\lambda}$ such that $\varphi_{\lambda} = \varphi_i^* \circ \varphi_{\mu}$, and $\{X/\varPhi_i; \varphi_i^{\mu}\}\$ is an inverse system of metrizable spaces. Let us set $\mu_{\phi}(X) = \lim X/\phi_{\phi}.$

For any point x of X, let us put $\varphi(x) = {\varphi_1(x)}$. Then $\varphi : X \to \mu_\varphi(X)$ is a homeomorphism into.

In case every Cauchy family $\{C_i\}$ of X with respect to Φ which has the countable intersection property is non-vanishing (that is, $\cap \overline{C} \neq \phi$), we say that X is weakly complete with respect to Φ .

Theorem 1. The map $\varphi: X \to \mu_{\varphi}(X)$ is onto if and only if X is weakly complete with respect to Φ .

In case Φ is the finest uniformity (that is, Φ consists of all normal open coverings of X), we write $\mu(X)$ instead of $\mu_{\phi}(X)$. In this case