120. Some Remarks on Boundedness of Linear Transformations from Banach Spaces into Orlicz Spaces of Lebesgue-Bochner Measurable Functions

By Joseph Diestel

West Georgia College and Southwire Co., Carrollton, Georgia 30117, U.S.A.

(Comm. by Kinjirô KUNUGI, M. J. A., June 12, 1970)

Let X be an abstract set.

Let R be the set of real numbers. Let R^+ be the set of non-negative reals. Let Y, Z and W be arbitrary Banach spaces.

Denote by | the norm of any element of Y, Z or W.

A collection V (non-empty) of subsets of X is said to be a pre-ring of subsets of X whenever A_1 , $A_2 \in V$ implies $A_1 \cap A_2 \in V$ and $A_1 \mid A_2$ can be written as a disjoint union of some finite collection of members of V.

Let V be a pre-ring of subsets of X.

A function $v: V \rightarrow R^+$ will be called a volume whenever for every countable family of disjoint sets $A_t \in V(t \in T)$ such that $A = \bigcup_{t \in T} A_t \in V$ we have $v(A) = \sum_T v(A_t)$.

Let v be a volume defined on V. We call the triple (X, V, v) a volume space. Denote by V_v^+ the collection $\{A \in V : v(A) > 0\}$.

In [1], is developed the basic theory of the space of Lebesgue-Bochner summable functions generated by the volume space (X,V,v). We denote this space by $L_{\mathbf{1}}(v,Y)$; also we denote by S(V,Y) the space of all V-simple functions with values in Y, i.e., functions $f:X\to Y$ of the form $f(x)=\sum\limits_{i=1}^n y_iX_{A_i}(x)$ where $y_1,\cdots,y_n\in Y$ and A_1,\cdots,A_n are disjoint members of V, and by $S^+(V)$ the set of non-negative members of S(V,R).

Let $f: X \rightarrow Y$. We call f v-locally summable, denoted by $f \in L_1^{\text{loc}}(v, Y)$, whenever for each $A \in V_v^+$, $X_A \cdot f \in L_1$. We endow $L_1^{\text{loc}}(v, Y)$ with the locally convex topology generated by the family of seminorms $\{\| \ \|_A \colon A \in V^+ \}$ where

$$||f||_A = ||X_A \cdot f||_{1,v}$$

Let (p,q) be a pair of real-valued functions defined on the interval $(0,\infty)$ which satisfy the following conditions: (i) p is continuous, $p:(0,\infty)\rightarrow(0,\infty)$, and p is differentiable with derivative p' on $(0,\infty)$; (ii) p is a diffeomorphism of $(0,\infty)$ with itself such that q(s)

^{*)} The author's research on this paper was supported in part by West Georgia College Faculty Grant 699.