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One of the well known theorems for the metrizability is as follows:
A regular T-space X is metrizable if and only if there exists a a-locally
finite open basis of X.

Our purpose of this paper is to study the spaces with the a-star
finite open basis.

Let us recall the definitions of terms which are used in the state-
ment of this paper. Let X be a topological space and ?I be a collection
of subsets of X. is said to be point finite (resp. point countable) if
every point of X is contained in at most finitely (resp. countably) many
elements of . is locally finite (resp. locally countable) if every
point of X has a neighborhood which intersects only finitely (resp.
countably) many elements of ?I. ,is star finite (resp. star countable)
if every element of intersects only finitely (resp. countably) many
elements of /. A space X is said to be strongly paracompact if every
open covering of X has a star finite open covering of X as a refinement.
A a-star finite open basis is an open basis which is the union of count-
ably many star finite open coverings.

Finally, to state our results we need the next notation. Let
{Ul x e X} be a collection of subsets of X with the index set X, then
its collection is symmetric if "y e U" is equivalent to "x e Uv".

We assume that all the spaces in this paper are T-spaces and for
a symmetric collection {U Ix e X}, U contains x for every point x e X.

As is well known, not every metric space has a a-star finite
basis (see Yu. M. Smirnov [5]). The existence of a a-star finite open
basis is not sufficient for a metric space to be strongly paracompact
(see J. Nagata [4, p. 201]), but clearly, a strong paracompactness or a
local compactness is sufficient for a metric space to be with the a-star
finite open basis, and furthermore it is known that a metric space X
has a a-star finite open basis if and only if X is homeomorphic to a
subspace of atopological product N(9)1)Iw for suitable 9 (see J.
Nagata [4, p. 201] or [3]).

1) N(9) is the generalized Baire’s zero dimensional space with respect to
that is N(2) is the set of all sequences (al, c2,...) of elements a, e 9. The distance
between two distinct points a=(c1, a,...) and/=(1,/.’’ ") of N(9) are defined by

1
P (a’/)= min{kla#}


