116. On Fatou- and Plessner-Type Theorems

By Shinji YAMASHITA

Mathematical Institute, Tôhoku University

(Comm. by Kinjirô Kunugi, M. J. A., June 12, 1970)

This is a résumé of parts of my papers [4]–[6] published or unpublished. We give explanations to the diagramme.

f is a "map" from U into Ω .

Fatou points, Meier points and Plessner points for f are defined suitably on the boundary ∂U of U.

F is Fatou-type theorem: If f is bounded in U, then almost every point of ∂U is a Fatou point. Here, "almost every" means "except for a set of Lebesgue measure zero on ∂U ".

P is Plessner-type theorem: Almost every point of ∂U is either a Plessner point or a Fatou point.

MF is Topological Fatou-type theorem: If f is bounded in U, then nearly every point of ∂U is a Meier point. Here, "nearly every" means "except for a set of first Baire category on ∂U ".

MP is Topological Plessner-type theorem: Nearly every point of ∂U is either a Plessner point or a Meier point.

			8		
U		Open disk 2		Open unit ball in $R^{\scriptscriptstyle 3}$	
Ω	Riemann sphere $ w \leq \infty$			R^1 added $-\infty$ and $+\infty$	
f	Meromorphic function	Quasi-con- formal function	Algebroid function	Real-harmonic function	
F	Yes1)	No ⁵⁾	Yes ⁸⁾	Yes1)	Yes1)
P	Yes2)	No ⁵⁾	$\mathbf{Yes}^{8)}$	Yes ¹¹⁾	Yes ¹²⁾
MF	Yes³)	Yes ⁶⁾	$ m Yes^{9)}$	Yes ¹¹⁾	Yes ¹³⁾
MP	Yes ⁴⁾	Yes ⁷⁾	Yes ¹⁰⁾	Yes ¹¹⁾	Yes ¹⁴⁾

Diagramme

Notes. 1) This is now classical. 2) Plessner [3], Satz I. 3) Meier [1], Satz 6. 4) Meier [1], Satz 5. 5) Noshiro [2], p. 119.

- 6) Yamashita [4], Theorem 1. 7) Yamashita [4], Theorem 2.
- 8) Yamashita [5], Theorem 1. 9) Yamashita [5], Theorem 3.
- 10) Yamashita [5], Theorem 2. 11) This is proved implicitly in [6].
- 12) Yamashita [6], Theorem 2. 13) Yamashita [6], Theorem 3.
- 14) Yamashita [6], Theorem 1.