113. An Application of Serre-Grothendieck Duality Theorem to Local Cohomology

By Yukihiko NAMIKAWA

(Comm. by Kunihiko Kodaira, M. J. A., June 12, 1970)

The purpose of this note is to prove the following theorem using the Serre-Grothendieck duality theorem and to derive two formulae from it. These formulae show that some algebro-geometric notions can be expressed with local cohomology.

Theorem. Let X and S be locally noetherian preschemes of finite Krull dimension. Let $f: X \rightarrow S$ be a proper, smooth morphism of relative dimension n, and let $s: S \rightarrow X$ be a f-section. We identify the image of s with S and denote by $\mathcal G$ the sheaf of ideals in $\mathcal O_X$ defining the closed subprescheme S. Denote by $\omega_{X/S}$ the sheaf of n-th differential forms on X relative to f. Then for every coherent sheaf $\mathcal F$ on X and for every integer $p \geq 0$, there exists a functorial isomorphism (1) $f_*(\mathcal E_{xt}^p_{\mathcal O_X}(\mathcal F,\mathcal H_S^n(\omega_{X/S}))) \cong \lim_{\longrightarrow} \mathcal E_{xt}^p_{\mathcal O_S}(f_*(\mathcal F \otimes (\mathcal O_X/\mathcal G^{k+1})), \mathcal O_S).$

Remark 1. We can eliminate the regularity condition for f using derived functors. We can treat even more general cases ([N]). The proof becomes, however, so complicated in spite of little merit of generalization.

Proposition (SGA II, exposé VI, Theorem 2.3). Let X be a locally noetherian prescheme and let Y be a closed subprescheme of X defined by a coherent sheaf of ideals $\mathcal G$. Then for every coherent sheaf $\mathcal F$ on X and for every quasi-coherent sheaf $\mathcal G$ on X, there is a spectral sequence

$$(2) \qquad \mathcal{E}_{\mathsf{x}t^{p}_{\mathcal{O}_{\mathcal{X}}}}(\mathcal{F}, \mathcal{H}^{q}_{\mathsf{Y}}(\mathcal{G})) \Rightarrow \lim_{\substack{\longrightarrow \\ k \geq 0}} \mathcal{E}_{\mathsf{x}t^{p+q}}(\mathcal{F} \underset{\mathcal{O}_{\mathcal{X}}}{\otimes} (\mathcal{O}_{\mathcal{X}}/\mathcal{J}^{k+1}), \mathcal{G}).$$

Lemma. Under the same hypothesis of the theorem, let \mathcal{G} be a sheaf of abelian groups on X with support in S. Then for all p>0, $R^pf_*(\mathcal{G})=0$.

Proof. On the category of sheaves of abelian groups whose supports are in S, it is obvious that the direct image functor f_* is the same as the restriction functor s^* under the above hypothesis. Since s^* is an exact functor and the canonical flasque resolution of \mathcal{G} can be