151. Summability of Fourier Series

By Masako IZUMI and Shin-ichi IZUMI Department of Mathematics, The Australian National University, Canberra, Australia

(Comm. by Kinjirô KUNUGI, M. J. A., Sept. 12, 1970)

1. Introduction and Theorems.

1.1. Let $\sum a_n$ be an infinite series and (s_n) be the sequence of its partial sums. If

$$L(x) = \frac{1}{-\log(1-x)} \sum_{n=1}^{\infty} s_n x^n / n \rightarrow s \quad \text{as} \quad x \uparrow 1,$$

then the series $\sum a_n$ is said to be (L) summable to s. We shall consider a more general summability. Let (p_n) be a sequence of nonnegative numbers and suppose that the series $p(x) = \sum_{n=1}^{\infty} p_n x^n$ converges for all x, 0 < x < 1 and $p(x) \uparrow \infty$ as $x \uparrow 1$. If $P(x) = \frac{1}{p(x)} \sum_{n=1}^{\infty} p_n s_n x^n \rightarrow s$ as $x \uparrow 1$,

then the series $\sum a_n$ is said to be (P) summable to s.

About (L) summability of Fourier series, M. Nanda ([1], cf. [2] and [3]) proved the

Theorem I. If

(1)
$$g(t) = \int_t^{\pi} \varphi(u) u^{-1} du = o(\log 1/t) \quad as \quad t \downarrow 0$$

where $\varphi(u) = f(x_0+u) + f(x_0-u) - 2s$, then the Fourier series of f is (L) summable to s at the point x_0 .

We shall generalize this theorem to (P) summability in the following form.

Theorem 1. Suppose that the sequence (np_n) is monotone (nondecreasing or non-increasing) and concave or convex and that

$$p(x)/(1-x)^2p'(x){
ightarrow}{
ightarrow} \quad as \quad x\uparrow 1.$$

(2)
$$\int_{1-x}^{\pi} G(t)t^{-3}dt = o(p(x)/(1-x)^2 p'(x)) \quad as \quad x \uparrow 1$$

where $G(t) = \int_{0}^{t} |g(u)| du$, then the Fourier series of f is (P) summable to s at the point x_{0} .

The condition (2) is the consequence of

$$(3) \qquad \int_0^x (p(t)/(1-t)^3 p'(t)) dt \leq A p(x)/(1-x)^2 p'(x) \quad \text{as} \quad x \uparrow 1$$

and