150. Absolute Nörlund Summability Factor of Fourier Series

By Masako IZUMI and Shin-ichi IZUMI

(Comm. by Kinjirô KUNUGI, M. J. A., Sept. 12, 1970)

1. Let $\sum_{n=0}^{\infty} a_n$ be an infinite series and let (s_n) be the sequence of its partial sums. Let $(p_n)=(p_0, p_1, \cdots)$ be a sequence of positive numbers and $P_n=p_0+p_1+\cdots+p_n$ $(n=0,1,2,\cdots)$, $p_{-1}=P_{-1}=0$. We write

$$t_n = P_n^{-1} \sum_{k=0}^n p_{n-k} s_k = P_n^{-1} \sum_{k=0}^n P_{n-k} a_k \qquad (n = 1, 2, \cdots)$$

which is called the *n*th Nörlund mean of the series $\sum a_n$ or the sequence (s_n) . If the sequence (t_n) is of bounded variation, then the series $\sum a_n$ is called to be absolutely summable (N, p_n) or summable $|N, p_n|$ and we write $\sum a_n \in |N, p_n|$.

Let f be an integrable function over the interval $(0, 2\pi)$ and be periodic with period 2π . We denote its Fourier series by

$$f(t) \sim \frac{1}{2} a_0 + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt) = \sum_{n=0}^{\infty} A_n(t).$$

The sequence (m_n) is called the absolute Nörlund summability factor or the $|N, p_n|$ summability factor of the Fourier series of f at the point x if $\sum m_n A_n(x) \in |N, p_n|$.

We suppose always that all m_n are non-negative.

S. V. Kolhekar [1] has proved the

Theorem A. Let (m_n) be a monotone decreasing sequence satisfying the condition

$$(1) \qquad \qquad \sum_{n=1}^{\infty} m_n n^{-1} \log n < \infty$$

and let (p_n) be a monotone increasing sequence such that (2) $p_n/P_n = O(1/n), \quad \varDelta(P_n/p_n) = O(1)$ as $n \to \infty$. Then, if

(3)
$$\Phi(t) = \int_0^t |\varphi(u)| \, du = O(t) \quad \text{as } t \to 0$$

where $\varphi(u) = \varphi_x(u) = f(x+u) + f(x-u) - 2f(x)$, then $\sum m_n A_n(x) \in [N, p_n]$.

We define a function m(t) continuous on the interval $(1, \infty)$ such that $m(n) = m_n$ for $n = 1, 2, \cdots$ and m(t) is linear for every non-integral t. Similarly p(t) is defined by the sequence (p_n) and we put $P(t) = \int_{-\infty}^{t} p(u) du$.