146. Generalized Fermat's Last Theorem and Regular Primes

By J. M. Gandhi
(Comm. by Kinjirô Kunugi, m. J. A., Sept. 12, 1970)

1. Introduction.

According to Fermat's Last Theorem (FLT) the equation
(1)

$$
x^{n}+y^{n}=z^{n}, \quad n>2
$$

has no integral solution in non-zero integers. Gandhi [3] generalizing FLT, conjectured that the equation

$$
\begin{equation*}
x^{n}+y^{n}=c z^{n} \tag{2}
\end{equation*}
$$

has no solution if $c \leq n$. Here x, y, z are non-zero unequal integers, c and n are also integers. Gandhi [3] proved his conjectures for several even powers and quoted a mass of results from literature to support his conjecture. The purpose of the present paper is to prove

Theorem 1. The equation
(3)

$$
x^{l}+y^{l}=c z^{l}
$$

has no integral solutions, where c is any integer prime to the regular prime $l>3,(\phi(c), l)=1$ and

$$
c^{l-1} \equiv \equiv 1\left(\bmod l^{2}\right) \quad 2^{l-1} \not \equiv c^{l-1}\left(\bmod l^{2}\right) .
$$

Here and in what follows $\phi(c)$ denotes Euler's function.
Consider $n=l$ in (2), l being a regular prime. Let (c, l) $=1$ and $(\phi(c), l)=1$. Then $c<l$ satisfies the condition $(\phi(c), l)=1$ hence in view of Theorem 1 and Maillet's result [9] that the equation $x^{l}+y^{l}=l z^{l}$ is impossible, Gandhi's conjecture is verified for a regular prime l for all such values of c, which satisfy

$$
2^{l-1} \not \equiv c^{l-1}\left(\bmod l^{2}\right), c^{l-1} \not \equiv 1\left(\bmod l^{2}\right)
$$

Note that the truth of the theorem does not depend on particular values of x, y and z .

To prove Theorem 1, we shall discuss it under three cases.
First Case $x y z$ prime to l
Second Case $x y \equiv 0(\bmod l)$
Third Case $\quad z \equiv 0(\bmod l)$.
We note that the following theorem due to Györy [4], contains our theorem for the first two cases, hence we need to prove our theorem for third case only.

Theorem (Györy). Let p be an arbitrary odd prime >3. If $(\phi(c), p)=1, c^{p-1} \not \equiv 2^{p-1}\left(\bmod p^{2}\right)$ then $x^{p}+y^{p}=c z^{p}, p \nmid z$ has a solution only if $r^{p-1} \equiv 1\left(\bmod p^{2}\right)$ for an arbitrary divisor r of c.

For other results for the diophantine equation $x^{n}+y^{n}=c z^{n}$, refer-

