208. Construction of Elementary Solutions for I-hyperbolic Operators and Solutions with Small Singularities

By Takahiro Kawai
Research Institute for Mathematical Sciences, Kyoto University

(Comm. by Kunihiko Kodaira, m. J. A., Nov. 12, 1970)

In this note we treat the following problems:
(I) Construction of the elementary solution of the Cauchy problem for a hyperbolic differential operator (Theorem 3).
(II) The condition for I-hyperbolicity (Theorem 5).
(III) Construction of a solution of a (homogeneous) differential equation whose singular support on $S^{*} M$ is contained in a bicharacteristic strip (Theorem 6). Here $S^{*} M$ denotes the co-sphere or cotangential sphere bundle of the underlying real analytic manifold M, which we take to be a domain in \boldsymbol{R}^{n+1} containing the origin.

This paper is a summary of a part of forthcoming paper Kawai [7] in which details will be given. Throughout this note P will denote a linear partial differential operator of order m and of simple characteristics with analytic coefficients, whose principal symbol we denote by P_{m}.

We first state a theorem essentially due to Hamada [1], which generalizes the Cauchy-Kovalevsky theorem.

Theorem 1. Let P be a partial differential operator with holomorphic coefficients defined near the origin of C^{n+1}. (Hereafter we denote a point in C^{n+1} by $(t, z)=\left(t, z_{1}, \cdots, z_{n}\right)$ and assume $P_{m}(t, z ; 1,0)$ $\neq 0$ near the origin.) We assume that the solutions $\tau=\tau_{j}(t, z ; \xi)$ $(j=1, \cdots, m)$ of the equation $P_{m}(t, z ; \tau, \xi)=0$ are mutually disjoint near $(t, z ; \xi)=\left(0,0 ; \xi_{0}\right)$ and consider the following singular Cauchy problem:

$$
\begin{align*}
& \left\{\begin{array}{l}
P(t, z, \partial / \partial t, \partial / \partial z) u_{k}(t, z, y ; \xi)=0 \\
\left.(\partial / \partial t)^{j} u_{k}(t, z, y ; \xi)\right|_{t=0}=\delta_{j k}(1 /<z-y, \xi>)^{n}
\end{array}\right. \tag{SC}\\
& \left(0 \leqq j, k \leqq m-1,|\xi|=\left|\xi_{0}\right|=1,\left|\xi-\xi_{0}\right| \ll 1\right) .
\end{align*}
$$

Then (SC) admits a unique local solution $u_{k}(t, z, y ; \xi)$ which is a multivalued analytic function of $(t, z) \in \boldsymbol{C}^{n+1}$ defined outside $K^{(1)}(y, \xi) \cup \cdots$ $\cup K^{(m)}(y, \xi) ;$ here $K^{(l)}(y, \xi)=\left\{(t, z) \mid \varphi^{(l)}(t, z, y ; \xi)=0\right\}, \quad l=1, \cdots, m$, denote the m (non-singular) characteristic surfaces of P_{m} passing through the intersection of complex hypersurfaces $t=0$ and $\langle z, \xi\rangle$ $=\langle y, \xi\rangle$ in $C^{n+1} . \varphi^{(l)}(t, z, y ; \xi)$ denotes the corresponding characteristic function or the phase function satisfying $P_{m}\left(t, z ; \operatorname{grad}_{(t, z)} \varphi^{(l)}(t, z, y ; \xi)\right)$ $\equiv 0$. Furthermore u has the form $\sum_{l=1}^{m} u^{(l)}$, where the summand $u^{(l)}$

