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In this note we treat the following problems:

(I) Construction of the elementary solution of the Cauchy
problem for a hyperbolic differential operator (Theorem 3).

(II) The condition for I-hyperbolicity (Theorem 5).

(ITI) Construction of a solution of a (homogeneous) differential
equation whose singular support on S*M is contained in a bicharac-
teristic strip (Theorem 6). Here S*M denotes the co-sphere or co-
tangential sphere bundle of the underlying real analytic manifold M,
which we take to be a domain in R**! containing the origin.

This paper is a summary of a part of forthcoming paper Kawai
[7] in which details will be given. Throughout this note P will denote
a linear partial differential operator of order m and of simple charac-
teristics with analytic coefficients, whose principal symbol we denote
by P,,.

We first state a theorem essentially due to Hamada [1], which
generalizes the Cauchy-Kovalevsky theorem.

Theorem 1. Let P be o partial differential operator with holo-
morphic coefficients defined near the origin of C"*'. (Hereafter we
denote a point in C**' by (t,2)=(, 2, -+ +,2,) and assume P, (t,z;1,0)
+0 near the origin.) We assume that the solutions t=t,t,z; &)
(j=1,..-,m) of the equation P,(t,z;7,5)=0 are mutually disjoint
near (t,2;8)=(0,0;&,) and consider the following singular Cauchy
problem :

(SO) P(t,z,0/0t,0/02)u(t,2,y; E)=0

(0/0t)u(t, 2,95 E)lico=0,41) <z—y, E>)"

0=, k=m—1,|§|=|&|=1,[§—&|<D.

Then (SC) admits a unique local solution u,(t,z,y; &) which is a mul-
tivalued analytic function of (t,z) e C*** defined outside K (y, &)U - - .
UK™(y,&); here KV,&)={{t,2)|eV(t,z2,y; §=0}, I=1,...,m,
denote the m (non-singular) characteristic surfaces of P, passing
through the intersection of complex hypersurfaces t=0 and {z,&>
=, &) inC eW(t, 2,y ; &) denotes the corresponding characteristic
function or the phase function satisfying P, (t, z; grad .0V, 2,9 ; &)
=0. Furthermore u has the form Y™, u®, where the summand u®



