207. On Dirichlet Series whose Coefficients are Class Numbers of Integral Binary Cubic Forms

By Takuro Shintani

(Comm. by Kunihiko KODAIRA, M. J. A., Nov. 12, 1970)

1. In this note we give a concrete example of "zeta functions associated with prehomogeneous vector spaces" introduced by Professor M. Sato.

2. We denote by V the vector space of real binary cubic forms. For every $x = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4$, we define $F_x \in V$ as follows:

$$F_x(u, v) = x_1u^3 + x_2u^2v + x_3uv^2 + x_4v^3.$$

In the following, we identify V with \mathbf{R}^4 by the linear isomorphism: $x \rightarrow F_x$. V becomes a $GL(2, \mathbf{R})$ -module if we put

$$g \cdot F_x((u, v)) = F_x((u, v)g) = F_{g \cdot x}((u, v))$$

(g \epsilon GL(2, **R**)).

For every $x \in V$, we denote by P(x) the discriminant of F_x . We have $P(x) = x_2^2 x_3^2 + 18x_1 x_2 x_3 x_4 - 4x_1 x_3^3 - 4x_2^3 x_4 - 27x_1^2 x_4^2$

and

$$P(g \cdot x) = (\det g)^{\epsilon} P(x) \qquad (g \in GL(2, \mathbb{R})).$$

In the following, we put

$$\chi(g)\!=\!(\det g)^6 \qquad (g\in GL(2,{ extbf{R}})).$$

For every $x, y \in V$, we put

$$\langle x, y \rangle = x_4 y_1 - \frac{1}{3} x_3 y_2 + \frac{1}{3} x_2 y_3 - x_1 y_4.$$

We denote by S(V) the space of rapidly decreasing functions on V and define the Fourier transform \hat{f} of $f \in S(V)$ as follows:

$$\hat{f}(x) = \int_{V} e^{2\pi i \langle x, y \rangle} f(y) dy.$$

3. We denote by L the lattice of integral binary cubic forms. We have

$$L = \{F_x; x \in Z^4\}.$$

Then L is invariant under the action of the $SL(2, \mathbb{Z})$. Two elements x, y of L are said to be equivalent if there exists a $\gamma \in SL(2, \mathbb{Z})$ such that $x = \gamma \cdot y$.

For every integer $m \neq 0$, we denote by L_m the set of integral binary cubic forms whose discriminants are m. It is known that there exist only finite number of equivalence classes in L_m . We denote by h(m) the number of equivalence classes in L_m . Let

$$x_1, \cdots, x_{h(m)}$$

be the representatives of equivalence classes in L_m . When m < 0,