17. Operators Satisfying the Growth Condition $\left(\mathrm{G}_{1}\right)$

By Teishirô Saitô
Tohoku University and Tulane University
(Comm. by Kinjirô Kunugi, m. J. A., Jan. 12, 1971)

1. This note is motivated by the following theorem by I. H. Sheth.

Theorem 1 [6]. Let $T=U R, R=\left(T^{*} T\right)^{1 / 2}$ be an invertible hyponormal operator such that U is cramped, then $0 \notin \overline{W(T)}$.

The purpose of this note is to prove a generalization of Theorem 1 to the case of operators satisfying the growth condition $\left(G_{1}\right)$. The technique of [6] actually proves the following theorem.

Theorem 2. Let $T=U R, R=\left(T^{*} T\right)^{1 / 2}$ be an invertible operator such that T satisfies $\left(G_{1}\right)$ and U is cramped, then $0 \notin \overline{W(T)}$.

In the case of normal operator, this was proved by Berberian [1]. Durszt [2] constructed an invertible operator T such that the unitary operator $U=T\left(T^{*} T\right)^{-1}$ is cramped and $0 \in \overline{W(T)}$.
2. In the following, an operator means a bounded linear operator on a Hilbert space. Let T be an operator on $H, \sigma(T)$ and $\sigma_{a}(T)$ denote the spectrum and the approximate point spectrum of T respectively. Let conv $\sigma(T)$ be the (automatically closed) convex hull of $\sigma(T)$. The numerical range $W(T)$ is the set $W(T)=\{(T x, x): x \in H,\|x\|=1\}$. We write $\overline{W(T)}$ the closure of $W(T) . \quad T$ satisfies the condition $\left(\mathrm{G}_{1}\right)$ if

$$
\left(\mathrm{G}_{1}\right) \quad\left\|(T-\alpha I)^{-1}\right\| \leq 1 / d(\alpha, \sigma(T))
$$

for all $\alpha \notin \sigma(T)$, where $d(\alpha, \sigma(T))$ is the distance from α to $\sigma(T)$. A unitary operator U is cramped if $\sigma(U) \subset\left\{e^{i \theta}: \theta_{0}<\theta<\theta_{0}+\pi\right\}$.

If T is hyponormal, T satisfies Condition (G_{1}). In fact, in this case $(T-\alpha I)^{-1}(\alpha \notin \sigma(T))$ is also hyponormal, hence

$$
\left\|(T-\alpha I)^{-1}\right\|=1 / \inf \{|\lambda-\alpha|: \lambda \varepsilon \sigma(T)\}=1 / d(\alpha, \sigma(T))
$$

Let X be a compact convex set of the complex plane. A point $\lambda \in X$ is bare if there is a circle through λ such that no points of X lie outside this circle.
3. To prove Theorem 2, we use the following facts which are stated as lemmas.

Lemma 1. If U is unitary, U is cramped if and only if $0 \notin W(U)$.
Proof. See [1: Lemma 3].
Lemma 2. Let T be an operator which satisfies Condition $\left(\mathrm{G}_{1}\right)$, then every bare point λ of $\overline{W(T)}$ is contained in $\sigma_{a}(T)$ and has the following property: $T x_{n}-\lambda x_{n} \rightarrow 0(n \rightarrow \infty)$ if and only if $T^{*} x_{n}-\bar{\lambda} x_{n} \rightarrow 0$ $(n \rightarrow \infty)$ for a sequence $\left\{x_{n}\right\}$ of unit vectors.

