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1. The existence of measure preserving transformations which
are weakly but not strongly mixing has been discussed by Halmos [4],
Kakutani-von Neumann [5] and Chacon [1], [2], [3]. Maruyama [6]
has shown the existence of Gaussian flows of this type by some results
in Gaussian processes. In this short paper we shall give a general
method for constructing flows of the type, of which idea is obtained
from Chacon [2], [3].

2. Let (/2, _,/) be a Lebesgue space, where
is the product Lebesgue class and / is the usual product Lebesgue
measure defined on _L.

Definition 1. A flow (Tt} on (, _f’,/) is said to be ergodic if there
exists a positive number t such that ,a(TtA B)0 holds for every pair
A, B from _L with positive measure.

Definition 2. If there exist a complex number with the absolute
value one and a function f in L(/2) such that

f(Tt(x, y))--tf(x, y) for a.a. (x, y) e/2 and all t,
we call and f an eigenvalue and an eigenfunction corresponding to
respectively.

Definition 3. A low (Tt} is weakly mixing if the flow cannot
have simple eigenvalues other than one.

Definition 4. A flow (Tt} is strongly mixing if
lim ,u(TA B) (A),u(B)

holds for every pair A, B from with positive measure.
Definition 5. For a set A of A: with positive measure, a local flow

on A is defined as follows:

l(x, y + t) if (x, y + t) e A,
(ft(x, y)= tundefined elsewhere,

for each (x, y) A.
Our main result may be stated as ollows"
Theorem. There exists a weakly mixing flow {Tt} on (9,

which is not strongly mixing.

Proof. After the flow is constructed, we will prove that it is
weakly but not strongly mixing using a direct argument. The first step


