14. A Simple Geometric Construction of Weakly Mixing Flows which are not Strongly Mixing

By Eijun KIN
Tokyo Metropolitan University

(Comm. by Kinjirô Kunugi, M. J. A., Jan. 12, 1971)

- 1. The existence of measure preserving transformations which are weakly but not strongly mixing has been discussed by Halmos [4], Kakutani-von Neumann [5] and Chacon [1], [2], [3]. Maruyama [6] has shown the existence of Gaussian flows of this type by some results in Gaussian processes. In this short paper we shall give a general method for constructing flows of the type, of which idea is obtained from Chacon [2], [3].
- 2. Let $(\Omega, \mathcal{L}, \mu)$ be a Lebesgue space, where $\Omega = [0, 1) \times [0, 1)$, \mathcal{L} is the product Lebesgue class and μ is the usual product Lebesgue measure defined on \mathcal{L} .

Definition 1. A flow $\{T_t\}$ on $(\Omega, \mathcal{L}, \mu)$ is said to be ergodic if there exists a positive number t such that $\mu(T_tA \cap B) > 0$ holds for every pair A, B from \mathcal{L} with positive measure.

Definition 2. If there exist a complex number λ with the absolute value one and a function f in $L^2(\Omega)$ such that

 $f(T_t(x,y)) = \lambda^t f(x,y)$ for a.a. $(x,y) \in \Omega$ and all t,

we call λ and f an eigenvalue and an eigenfunction corresponding to λ , respectively.

Definition 3. A flow $\{T_t\}$ is weakly mixing if the flow cannot have simple eigenvalues other than one.

Definition 4. A flow $\{T_t\}$ is strongly mixing if

$$\lim_{t\to\infty}\mu(T_tA\cap B)=\mu(A)\mu(B)$$

holds for every pair A, B from \mathcal{L} with positive measure.

Definition 5. For a set A of \mathcal{L} with positive measure, a local flow φ_t on A is defined as follows:

$$\varphi_t(x,y) = \begin{cases} (x,y+t) & \text{if } (x,y+t) \in A, \\ \text{undefined elsewhere,} \end{cases}$$

for each $(x, y) \in A$.

Our main result may be stated as follows:

Theorem. There exists a weakly mixing flow $\{T_t\}$ on (Ω, \mathcal{L}, u) which is not strongly mixing.

Proof. After the flow is constructed, we will prove that it is weakly but not strongly mixing using a direct argument. The first step