9. On H-closedness and the Wallman H-closed Extensions. II*)

By Chien WENJEN California State College at Long Beach, U.S.A. (Comm. by Kinjirô KUNUGI, M.J.A., Jan. 12, 1971)

4. The Wallman H-closed extensions. Let X be a space, \mathfrak{C} the family of all closed subsets of X, and W(X) the collection of all subfamilies of © which possess the PFIP and are maximal in © relative to this property. Two elements w_1, w_2 of W(X) are said to be equivalent if both of them contain the closures of the neighborhoods of the same point x in X. An equivalent class in W(X) corresponding to a point x is called a fixed end and denoted by $\mathfrak{A}(x)$; an element in W(X) which does not belong to any fixed end is called a free end and denoted by \mathfrak{A} . We denote by $\omega(X)$ the collection of all fixed and free ends in X. For an open subset U of X let $U^* = \{\mathfrak{A}(x) ; x \in U\}$. We introduce the following topology for $\omega(X)$, called Katětov topology: the neighborhoods for fixed ends $\mathfrak{A}(x)$ are U^* if $x \in U$ and for free ends \mathfrak{A} are $U^*U \{\mathfrak{A}\}$, where U is the interior of a closed set A belonging to \mathfrak{A} . The space $\omega(X)$ with Katetov topology is *H*-closed and the subspace consisting of all $\mathfrak{A}(x)$ is homeomorphic to X (also denoted by X). Moreover, the H-closed space $\omega(X)$ has the following properties: (1) X is dense in $\omega(X)$, (2) X is open in $\omega(X)$, and (3) $\omega(X)$ -X is discrete (see [5]).

Lemma 5. Every bounded real-valued continuous function f on X can be continuously extended over $\omega(X)$.

Proof. Suppose that f can not be continuously extended at $\mathfrak{A} \in \omega(X)$. Then there is an $\varepsilon > 0$ such that to the interior U of each member A of \mathfrak{A} there are $x, y \in \overline{U}$ satisfying the condition $f(y) - f(x) > \varepsilon$. It is clear that for two members A_{α}, A_{β} of \mathfrak{A} $f(y_{\beta}) - f(x_{\alpha}) > \varepsilon$, since $A_{\alpha} \cap A_{\beta} = A_{\alpha\beta}, f(y_{\alpha\beta}) \le \min\{f(y_{\alpha}), f(y_{\beta})\}, f(x_{\alpha\beta}) \ge \max\{f(x_{\alpha}), f(x_{\beta})\},$ and $f(y_{\alpha\beta}) - f(x_{\alpha\beta}) > \varepsilon$. Let L be the least upper bound of $\{f(x_{\alpha})\}$ and M the greatest lower bound of $\{f(y_{\alpha})\}$. Then M > L and $M - L \ge \varepsilon$. If $P = \left\{x; f(x) \ge M - \frac{\varepsilon}{3}\right\}$ and $Q = \left\{x; f(x) \le L + \frac{\varepsilon}{3}\right\}$, then both P and Q intervals and $x \ge 0$.

intersect each member of \mathfrak{A} in sets containing non-vacuous open sets and belong to \mathfrak{A} . But $P \cap Q = \emptyset$ and the contradiction proves the lemma.

Corollary. Every unbounded real-valued continuous function on

The work was done during Sabbatical Leave, Spring (1970).

^{k)} Presented to the Amer. Math. Soc., Aug., 28 (1970).