No. 1]

6. Construction of a Local Elementary Solution for Linear Partial Differential Operators. I

By Takahiro KAWAI

Research Institute for Mathematical Sciences, Kyoto University

(Comm. by Kunihiko KODAIRA, M. J. A., Jan. 12, 1971)

Let $P(x, D_x)$ be a partial differential operator with real analytic coefficients. Assume that the principal part P_m of P is simple characteristic and that P_m is of real coefficients. The purpose of this note is to construct E(x, y) which satisfies $P(x, D_x)E(x, y) = \delta(x-y)$ near (x_0, x_0, ξ_0) as sections of the sheaf C, where ξ_0 is a cotangent vector at x_0 . (We refer the reader to Sato [7], [8] about the notion of the sheaf Cdefined on the cotangential sphere (or co-sphere) bundle. See also Kashiwara and Kawai [3]). In other words we construct a local cospherical elementary solution for $P(x, D_x)$. We construct E(x, y) in two different methods. The first one relies on the analysis in a complex domain and the second on the theory of pseudo-differential operators of finite type developed in Kashiwara and Kawai [3]. The extension of our theory to the operators with complex coefficients will be given in our forthcoming note. The details of this note will be published elsewhere. (See also Kawai [5].)

1°. We begin with the following Theorem 1 essentially due to Hamada [1], which treats the singular Cauchy problem in a complex domain.

Let $P(z, D_z)$ be a linear partial differential operator with holomorphic coefficients defined near the origin of C^n and have the form $P(z, D_z) = \sum_{j=0}^{m} a_j(z, D_{z'}) \partial^j / \partial z_1^j$, where $a_0(z, D_z) \equiv 1$, $z' = (z_2, \dots, z_n)$ and $a_j(z, D_{z'})$ is a differential operator of order at most (m-j).

Denote by $P_m(z, \xi)$ the principal symbol of $P(z, D_z)$ where ξ is a cotangent vector at z which stands for D_z . Assume further that one of the solutions $\xi_1^0(z; \xi_2, \dots, \xi_n)$ of $P_m(z; \xi_1, \xi_2, \dots, \xi_n) = 0$ is holomorphic in (z, ξ') and that $\partial/\partial \xi_1 (P_m(z; \xi_1^0, \xi_2, \dots, \xi_n)) \neq 0$ near $(z, \xi') = (0, \xi'_0)$, where $\xi' = (\xi_2, \dots, \xi_n)$.

We denote by $\varphi(z, \xi'; s, y')$ the phase function with parameter $(s, y') = (s, y_2, \dots, y_n)$ corresponding to ξ_1^0 , that is, the characteristic function of $P(z, D_z)$ satisfying

- (i) $P_m(z, \operatorname{grad}_z \varphi) \equiv 0$
- (ii) $\varphi(s, z', \hat{\xi}', s, y') = \langle z' y', \hat{\xi}' \rangle$
- (iii) $\operatorname{grad}_{z} \varphi |_{z_{1}=s} = (\xi_{1}^{0}(s, z'; \xi_{2}, \dots, \xi_{n}), \xi_{2}, \dots, \xi_{n}).$
- Then we have