6. Construction of a Local Elementary Solution for Linear Partial Differential Operators. I

By Takahiro Kawai
Research Institute for Mathematical Sciences, Kyoto University

(Comm. by Kunihiko Kodaira, m. J. A., Jan. 12, 1971)

Let $P\left(x, D_{x}\right)$ be a partial differential operator with real analytic coefficients. Assume that the principal part P_{m} of P is simple characteristic and that P_{m} is of real coefficients. The purpose of this note is to construct $E(x, y)$ which satisfies $P\left(x, D_{x}\right) E(x, y)=\delta(x-y)$ near (x_{0}, x_{0}, ξ_{0}) as sections of the sheaf \mathcal{C}, where ξ_{0} is a cotangent vector at x_{0}. (We refer the reader to Sato [7], [8] about the notion of the sheaf \mathcal{C} defined on the cotangential sphere (or co-sphere) bundle. See also Kashiwara and Kawai [3]). In other words we construct a local cospherical elementary solution for $P\left(x, D_{x}\right)$. We construct $E(x, y)$ in two different methods. The first one relies on the analysis in a complex domain and the second on the theory of pseudo-differential operators of finite type developed in Kashiwara and Kawai [3]. The extension of our theory to the operators with complex coefficients will be given in our forthcoming note. The details of this note will be published elsewhere. (See also Kawai [5].)
$\mathbf{1}^{0}$. We begin with the following Theorem 1 essentially due to Hamada [1], which treats the singular Cauchy problem in a complex domain.

Let $P\left(z, D_{z}\right)$ be a linear partial differential operator with holomorphic coefficients defined near the origin of C^{n} and have the form $P\left(z, D_{z}\right)=\sum_{j=0}^{m} a_{j}\left(z, D_{z^{\prime}}\right) \partial^{j} / \partial z_{1}^{j}$, where $a_{0}\left(z, D_{z}\right) \equiv 1, z^{\prime}=\left(z_{2}, \cdots, z_{n}\right)$ and $a_{j}\left(z, D_{z^{\prime}}\right)$ is a differential operator of order at most ($m-j$).

Denote by $P_{m}(z, \xi)$ the principal symbol of $P\left(z, D_{z}\right)$ where ξ is a cotangent vector at z which stands for D_{z}. Assume further that one of the solutions $\xi_{1}^{0}\left(z ; \xi_{2}, \cdots, \xi_{n}\right)$ of $P_{m}\left(z ; \xi_{1}, \xi_{2}, \cdots, \xi_{n}\right)=0$ is holomorphic in $\left(z, \xi^{\prime}\right)$ and that $\partial / \partial \xi_{1}\left(P_{m}\left(z ; \xi_{1}^{0}, \xi_{2}, \cdots, \xi_{n}\right)\right) \neq 0$ near $\left(z, \xi^{\prime}\right)=\left(0, \xi_{0}^{\prime}\right)$, where $\xi^{\prime}=\left(\xi_{2}, \cdots, \xi_{n}\right)$.

We denote by $\varphi\left(z, \xi^{\prime} ; s, y^{\prime}\right)$ the phase function with parameter $\left(s, y^{\prime}\right)=\left(s, y_{2}, \cdots, y_{n}\right)$ corresponding to ξ_{1}^{0}, that is, the characteristic function of $P\left(z, D_{z}\right)$ satisfying
(i) $P_{m}\left(z, \operatorname{grad}_{z} \varphi\right) \equiv 0$
(ii) $\varphi\left(s, z^{\prime}, \xi^{\prime}, s, y^{\prime}\right)=\left\langle z^{\prime}-y^{\prime}, \xi^{\prime}\right\rangle$
(iii) $\left.\operatorname{grad}_{z} \varphi\right|_{z_{1}=s}=\left(\xi_{1}^{0}\left(s, z^{\prime} ; \xi_{2}, \cdots, \xi_{n}\right), \xi_{2}, \cdots, \xi_{n}\right)$.

Then we have

