5. A Remark on the Meet Decomposition of Ideals in Noncommutative Rings*)

By Hisao Izumi
Department of Mathematics, Ube Technical College
(Comm. by Kenjiro Shoda, m. J. A., Jan. 12, 1971)

Introduction. In his paper [4] N. Radu has called that a commutative ring R is in the class \mathfrak{D} if every ideal of R is represented as an intersection of primary ideals of R, and has shown that if R is in the class \mathfrak{D}, then $C B+A=C+A$ holds for ideals A, B and C of R such that $C \subseteq \bigcap_{\alpha \in I_{B}}\left(A+B_{\alpha}\right)$, where $\left\{B_{\alpha} \mid \alpha \in I_{B}\right\}$ is the set of all ideals which have the same nilradical with that of B.

The aim of this note is to generalize the above fact to noncommutative rings. Throughout this note, R is a noncommutative ring. The existence of unity is not assumed. The term ideals mean twosided ideals, and (x) means the principal ideal generated by an element x. An ideal Q of R is called a (right) M-primary [n-primary] ideal if $A B \subseteq Q$ and $A \nsubseteq Q$, for ideals A and B, imply that B is contained in the McCoy's [nilpotent] radical of Q. The right residual of an ideal A by an ideal B is denoted by $A: B$, that is, $A: B=\{x \in R \mid x B \subseteq A\}$. A ring R will be called that it is in the class \mathfrak{D} with respect to the McCoy's [nilpotent] radical if every ideal of R is represented as an intersection of M-primary [n-primary] ideals of R.
§1. Throughout this note, \bar{A} will denote the McCoy's radical of an ideal A of R, that is, \bar{A} is the intersection of all minimal prime ideals containing A. For an ideal B, I_{B} will mean the set of the indices of the ideals B_{α} with $\bar{B}_{\alpha}=\bar{B}$.

Lemma 1. The following conditions are equivalent:
(1) R is in the class \mathfrak{D} with respect to the McCoy's [nilpotent] radical.
(2) Every strongly meet irreducible ideal is M-primary [nprimary].

Proof. This is immediate from the fact that every ideal is represented as an intersection of strongly meet irreducible ideals.

Theorem 1. The following conditions are equivalent:
(1) R is in the class \mathfrak{D} with respect to the McCoy's radical.
(2) If A, B and C are ideals such that $C \subseteq \bigcap_{\alpha \in I_{B}}\left(A+B_{\alpha}\right)$ then $C B+A$ $=C+A$.
*) Dedicated to Professor K. Asano on his sixtieth birthday.

