38. Properties of Ergodic Affine Transformations of Locally Compact Groups. III

By Ryotaro SATO

Department of Mathematics, Josai University, Saitama (Comm. by Kinjirô KUNUGI, M. J. A., Feb. 12, 1971)

Let G be an abelian group. An affine transformation S of G is a transformation of G onto itself of the form S(x) = a + T(x), where $a \in G$ and T is an automorphism of G. In case G is a locally compact non-discrete topological group, it has been proved (cf. [1], [2], [3] and [4]) that if there exists a continuous affine transformation S of G which has a dense orbit then G is compact. In the present paper we shall study the structure of a discrete abelian group G which is covered by an orbit under an affine transformation S.

1. Theorems.

From now on, for simplicity, we say that an affine transformation S of G satisfies property \mathcal{A} if $\{S^n(w); n=0, \pm 1, \pm 2, \cdots\} = G$ for some $w \in G$.

Theorem 1. Let G be an infinite abelian group. If G has an affine transformation S(x) = a + T(x) satisfying property \mathcal{A} then G is isomorphic with the additive group Z of the integers, a is a generator, and T is the identity transformation.

Theorem 2. Let G be a finite abelian group with order r. If 4 does not divide r, and G has an affine transformation S(x)=a+T(x) satisfying property \mathcal{A} then G is isomorphic with the cyclic group Z(r) of order r, and a is a generator.

2. Proof of Theorem 1.

Lemma 1. If G has an affine transformation S(x) = a + T(x) satisfying property \mathcal{A} then G is finitely generated.

Proof. Since $\{S^n(0); n=0, \pm 1, \pm 2, \cdots\} = \{S^n(w); n=0, \pm 1, \pm 2, \cdots\} = G$, $T(a) = S^k(0)$ for some integer k. If k=0 (resp. 1, or 2) then it is easy to check that $G = \{0\}$ (resp. $G = \{na; n=0, \pm 1, \pm 2, \cdots\}$, or $G = \{0\}$). If $k \ge 3$, we see that $T^k(a)$ is in the subgroup H generated by $\{a, T(a), \cdots, T^{k-1}(a)\}$. It follows at once that

$$a \in T(H) \subset H$$
,

and hence T(H)=H, and S(H)=H. This clearly assures that G=H, the required conclusion. A similar argument also applies in the case k<0, and so G is finitely generated.

Lemma 2. If the additive group $Z^p(p \ge 1)$ has an affine transfor-