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Let G be an abelian group. An affine transformation S of G is a
transformation of G onto itself of the form S(x)-a+ T(x), where a e G
and T is an automorphism o G. In case G is a locally compact non-
discrete topological group, it has been proved (cf. [1], [2], [3] and [4])
that if there exists a continuous affine transformation S o G which
has a dense orbit then G is compact. In the present paper we shall
study the structure of a discrete abelian group G which is covered by
an orbit under an affine transformation S.

1. Theorems.
From now on, for simplicity, we say that an affine transformation

S of G satisfies property i {Sn(w);n=O, + 1, +2,...}-G or some

Theorem 1. Let G be an infinite abelian group. If G has an affine
transformation S(x)-a+ T(x) satisfying property then G is isomor-
phic with the additive group Z of the integers, a is a generator, and T
is the identity transformation.

Theorem 2. Let G be a finite abelian group with order r. If 4
does not divide r, and G has an affine transformation S(x)-a+ T(x)
satisfying property then G is isomorphic with the cyclic group Z(r)
of order r, and a is a generator.

2. Proof of Theorem 1.
Lemma 1. If G has an affine transformation S(x)-a+ T(x) satis-

fying property then G is finitely generated.
Proof. Since {Sn(0) n=0, +__ 1, 2, }-- {Sn(w) n--0, _+ 1, 2,

..}=G, T(a)-S(O)for some integer k. If k-0 (resp. 1, or 2) then
it is easy to check that G-{0} (resp. G-{na;n=O, +1, +_2,...}, or
G-(0}). If k>_ 3, we see that T(a) is in the subgroup H generated by
{a, T(a), ..., T-(a)}. It follows at once that

a e T(H)cH,
and hence T(H)=H, and S(H)-H. This clearly assures that G=H,
the required conclusion. A similar argument also applies in the case
k0, and so G is finitely generated.

Lemma 2. If the additive group ZP(p 1) has an affine transfor-


