35. Surgery and Singularities in Codimension Two

By Yukio Matsumoto
University of Tokyo
(Comm. by Kunihiko Kodaira, m. J. A., Feb. 12, 1971)

1. Statement of results. Throughout this paper, W^{m+2} denotes a compact connected 1-connected $P L m+2$-manifold which is a Poincaré complex of formal dimension m. A closed $P L$ submanifold L^{m} of W^{m+2} with codimension 2 is called a homotopy spine if the inclusion map $i: L^{m} \rightarrow W^{m+2}$ is a homotopy equivalence. In this paper, we shall formulate an obstruction theory to finding locally flat homotopy spines of W^{m+2}. The problem has been solved in odd dimensional case [1]. Here we shall consider the case where m is even: $m=2 n \geqq 6$. An additional condition (H) on $W^{2 n+2}$ is also assumed, which is a generalization of simplicity condition for knots [3].

There exist an S^{1}-fibration $\xi \xrightarrow{p} W$ and a $\operatorname{map} \phi: \partial W^{(n)} \rightarrow \xi$, where $\partial W^{(n)}$ is the n-skeleton of some triangulation of ∂W, such that (i) (H)
 commutative.
Note that $\pi_{1}(\partial W) \cong \pi_{1}(\xi)$ is a cyclic group. Denote this group in a multiplicative way by $J_{q}=\left\{t^{m} \mid m \in \boldsymbol{Z}\right\} /\left(t^{q}\right), q=0,1,2, \cdots$. In § 3, a covariant functor $P_{2 n}(*)$ from the category \{cyclic groups, onto homomorphisms\} to the category \{abelian groups, onto homomorphisms\} is algebraically introduced. Our results are the following:

Theorem 1.1. $W^{2 n+2}$ admits a locally flat homotopy spine if and only if a well defined obstruction element $\eta(W) \in P_{2 n}\left(\pi_{1} \partial W\right)$ is equal to zero.

The groups $P_{2 n}\left(J_{q}\right)$ have some interesting properties.
Theorem 1.2. (i) $P_{2 n}\left(J_{0}\right) \cong C_{2 n-1}$ (Levine's knot cobordism group of ($2 n-1,2 n+1$)-knots [3]), where J_{0} is an infinite cyclic group. (ii) $P_{2 n}(1) \cong P_{2 n}$ (Kervaire-Milnor's surgery obstruction group [2]), where 1 stands for a trivial group. (iii) $P_{2 n+4}\left(J_{q}\right)=P_{2 n}\left(J_{q}\right)$.

A submanifold $L^{2 n}$ is said to be 1-flat if it is locally flat except at a finite set of points. The obstruction $\eta(W)$ can be described in terms of singularities of 1-flat homotopy spines. We have proved in [1] that $W^{2 n+2}$ admits a 1-flat homotopy spine $L^{2 n}$. Define the singularity at $p \in L$ by a $(2 n-1,2 n+1)$-knot $\sigma_{p}(L)=(L k(p, L), L k(p, W))$. The total singularity of $L^{2 n}$ in W is the summation $\sigma(L)=\sum_{p \in L} \sigma_{p}(L)$ in Levine's

