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Let P(x,D) be a linear partial differential operator with real
analytic coefficients defined on a domain containing the origin in R.
We denote its principal symbol by P(x, ). Assume that P(x, D) has
simple characteristics, that is, grad P,(x, ) :/=0 whenever P(x, )-----0.

In this note we first construct a local elementary solution for P
under the condition (P), which is concerned with the behaviour of the
characteristic surfaces. Secondly we prove that the condition (P) fol-
lows from the condition (NT), which is deeply related with the work
of Nirenberg and Treves [6], [7]. The condition (NT)x does not cover
all the possibilities of the solvable partial differential operators in the
theory o hyperunctions. Thus our result is weaker than that o
Nirenberg and Treves [7] concerning distribution solutions. Our
analysis is different rom theirs in the point that we treat the problem
in the framework of hyperunctions or rather in that o Sato’s sheaf C
defined on the cotangential sphere bundle (or co-sphere bundle in short).
For the notion of the sheaf C we refer the reader to Sato [8], [9]. We
hope, however, our method o construction of an elementary solution
given in Theorem 2 reveals the geometrical meaning of condition (NT)].

In Theorem 4 and Theorem 5 we also treat two cases which are not
covered by condition (NT). We remark that the three features, which
appear in Theorems 2, 4 and 5 respectively, are typical ones about the
behaviour o the characteristic surfaces.

We have constructed a local elementary solution E(x, y) for a linear
partial differential operator P with simple characteristics and with real
coefficients in its principal symbol and investigated its singularities in
our previous note [4], so that in the sequel we consider the case where
the principal symbol P(x, ) of P has the form A(x, )+iB(x, )
where A and B are real and B0. We can assume that gradA
:/:0 when P--O without the loss of generalities. The details of this
note will be published elsewhere. (See also Kawai [5].)

Our method of construction of an elementary solution for P is just
the same as that employed in our previous note [4]. We first repeat
the fundamental theorem essentially due to Hamada [1] in a form which
is suitable for the present situations.


