34. Construction of a Local Elementary Solution for Linear Partial Differential Operators. II

By Takahiro Kawai
Research Institute for Mathematical Sciences, Kyoto University
(Comm. by Kunihiko Kodaira, m. J. A., Feb. 12, 1971)

Let $P\left(x, D_{x}\right)$ be a linear partial differential operator with real analytic coefficients defined on a domain containing the origin in \boldsymbol{R}^{n}. We denote its principal symbol by $P_{m}(x, \xi)$. Assume that $P\left(x, D_{x}\right)$ has simple characteristics, that is, $\operatorname{grad}_{\xi} P_{m}(x, \xi) \neq 0$ whenever $P_{m}(x, \xi)=0$.

In this note we first construct a local elementary solution for P under the condition (P), which is concerned with the behaviour of the characteristic surfaces. Secondly we prove that the condition (P) follows from the condition $(\mathrm{NT})_{f}$, which is deeply related with the work of Nirenberg and Treves [6], [7]. The condition (NT) ${ }_{f}$ does not cover all the possibilities of the solvable partial differential operators in the theory of hyperfunctions. Thus our result is weaker than that of Nirenberg and Treves [7] concerning distribution solutions. Our analysis is different from theirs in the point that we treat the problem in the framework of hyperfunctions or rather in that of Sato's sheaf \mathcal{C} defined on the cotangential sphere bundle (or co-sphere bundle in short). For the notion of the sheaf \mathcal{C} we refer the reader to Sato [8], [9]. We hope, however, our method of construction of an elementary solution given in Theorem 2 reveals the geometrical meaning of condition (NT) ${ }_{f}$.

In Theorem 4 and Theorem 5 we also treat two cases which are not covered by condition $(\mathrm{NT})_{f}$. We remark that the three features, which appear in Theorems 2, 4 and 5 respectively, are typical ones about the behaviour of the characteristic surfaces.

We have constructed a local elementary solution $E(x, y)$ for a linear partial differential operator P with simple characteristics and with real coefficients in its principal symbol and investigated its singularities in our previous note [4], so that in the sequel we consider the case where the principal symbol $P_{m}(x, \xi)$ of P has the form $A_{m}(x, \xi)+i B_{m}(x, \xi)$ where A_{m} and B_{m} are real and $B_{m} \not \equiv 0$. We can assume that $\operatorname{grad}_{\xi} A_{m}$ $\neq 0$ when $P_{m}=0$ without the loss of generalities. The details of this note will be published elsewhere. (See also Kawai [5].)

Our method of construction of an elementary solution for P is just the same as that employed in our previous note [4]. We first repeat the fundamental theorem essentially due to Hamada [1] in a form which is suitable for the present situations.

