66. Uniformities for Function Spaces and Continuity Conditions

By Takashi KARUBE Department of Mathematics, Shimane University, Matsue (Comm. by Kinjirô KUNUGI, M. J. A., March 12, 1971)

1. Introduction. Let \mathbb{C} be, for example, a semi-group of continuous mappings of a uniform space X into itself. For given set-entourage uniformities on \mathbb{C} a number of properties have been studied. In the other way, we take the following basic criterion on the uniformities for \mathbb{C} in order to find out new natural uniformities on \mathbb{C} if possible:

1) the mapping $(u, x) \rightarrow u(x)$ of $\mathfrak{C} \times X$ into X is continuous,

2) the mapping $(u, v) \rightarrow uv$ of $\mathfrak{C} \times \mathfrak{C}$ into \mathfrak{C} is continuous.

Under this view we get Theorems 2, 3, 4, and 5 in the present paper, and then apply some of the results to get Theorems 6 and 7.

Proofs are omitted, most of which are straightforward. For terms and notations we follow Bourbaki [2].

2. Uniformizability condition.

Theorem 1. Let X be a set; let Y be a set endowed with a uniform structure U which is not the coarsest; let \mathfrak{S} be a family of subsets of X; and let \mathfrak{F} be the family of all mappings of X into Y. For each $A \in \mathfrak{S}$ and each $U \in \mathfrak{U}$, let W(A, U) denote the set of all pairs (u, v) of mappings of X into Y such that $(u(x), v(x)) \in U$ for all $x \in A$. Then, as A runs through \mathfrak{S} and U runs through U, the sets W(A, U) form a fundamental system of entourages of a uniformity on \mathfrak{F} if and only if for any two sets $A_1, A_2 \in \mathfrak{S}$ there exists a set $A_3 \in \mathfrak{S}$ such that $A_3 \supset A_1 \cup A_2$. (1)

Definition 1. For a family \mathfrak{S} that satisfies (1), the uniformity on \mathfrak{F} generated by $\{W(A, U) | A \in \mathfrak{S}, U \in \mathfrak{U}\}$ is called \mathfrak{S} -uniformity.

Proposition 1. Let X, Y, \mathfrak{U} and \mathfrak{F} be the same as those in Theorem 1. Let \mathfrak{S} be a non-empty family of subsets of X; let \mathfrak{S}^* be the family of all sets that are finite unions of sets belonging to \mathfrak{S} ; let \mathfrak{S}^{**} be the family of all subsets of sets belonging to \mathfrak{S}^* ; for each $A \in \mathfrak{S}$ let \mathfrak{B}_A denote the $\{A\}$ -uniformity on \mathfrak{F} , where $\{A\}$ is the family consisting of the set Aonly. Let \mathfrak{M}^* and \mathfrak{M}^{**} denote \mathfrak{S}^* -, and \mathfrak{S}^{**} -uniformity on \mathfrak{F} respectively, and let \mathfrak{M} denote the uniformity of \mathfrak{S} -convergence in the sense of Bourbaki [2]. Then

 $\mathfrak{W} = \mathfrak{W}^* = \mathfrak{W}^{**} = \bigcup_{A \in \mathfrak{S}^*} \mathfrak{W}_A = \bigcup_{A \in \mathfrak{S}^{**}} \mathfrak{W}_A.$

The following propositions are the simple cases where some properties of \mathfrak{B} determine \mathfrak{S} and \mathfrak{U} .

Proposition 2. The following conditions are equivalent: