64. On the α-Deficiency of Meromorphic Functions under Change of Origin

By Nobushige TODA^{*)} Mathematical Institute, Tôhoku University (Comm. by Kinjirô KUNUGI, M. J. A., March 12, 1971)

1. Introduction. Let f(z) be a transcendental meromorphic function in $|z| < \infty$ of order ρ , $0 \le \rho \le \infty$ and of lower order μ . A real number α is said to be admissible to f(z) if $\alpha = 0$ when $\rho = 0$, $0 \le \alpha < \rho$ when $0 < \rho < \infty$ and $0 < \alpha < \infty$ when $\rho = \infty$. We will use the usual symbols of the Nevanlinna theory of meromorphic functions: T(r, f), $N(r, a, f), \delta(a, f)$ etc. (see [2]).

Now, we have introduced in [3] the following symbols in order to avoid the exceptional set in the second fundamental theorem of Nevanlinna for any admissible α to f(z) and $r_0 > 0$:

$$T_{\alpha}(r, r_{0}, f) = \int_{r_{0}}^{r} T(t, f) / t^{1+\alpha} dt, \qquad N_{\alpha}(r, r_{0}, a, f) = \int_{r_{0}}^{r} N(t, a, f) / t^{1+\alpha} dt$$

and

$$\delta_{\alpha}(a, f) = 1 - \limsup_{r \to \infty} \frac{N_{\alpha}(r, r_0, a, f)}{T_{\alpha}(r, r_0, f)},$$

where a is any point on the Riemann sphere, and proved:

1) $T_{\alpha}(r, r_0, f)$ tends to the infinity monotonously as $r \to \infty$ and

$$\limsup_{r \to \infty} \frac{\log T_{\alpha}(r, r_0, f)}{\log r} = \begin{cases} \rho - \alpha & \text{for } \rho < \infty \\ \infty & \text{for } \rho = \infty, \end{cases}$$
$$\lim_{r \to \infty} \frac{\log T_{\alpha}(r, r_0, f)}{\log r} \begin{cases} \ge \max (\mu - \alpha, 0) & \text{for } \mu < \infty \\ = \infty & \text{for } \mu = \infty, \end{cases}$$

2) $\delta_{\alpha}(a, f)$ is independent of the choice of r_0 and for admissible $\beta(>\alpha)$ to f(z)

$$\delta(a, f) \leqslant \delta_{\alpha}(a, f) \leqslant \delta_{\beta}(a, f) \leqslant 1,$$

3)
$$\sum_{a} \delta_{\alpha}(a, f) \leq 2.$$

We call $\delta_{\alpha}(a, f) \alpha$ -deficiency of f(z) at a. It is natural to consider whether the α -deficiency depends on the choice of origin or not as well as the Nevanlinna deficiency. In this note, we will show first that $\delta_{\alpha}(a, f)$ depends on the choice of origin by using Dugué's example ([1]) used for the case of $\delta(a, f)$, and next give some sufficient conditions under which $\delta_{\alpha}(a, f)$ is invariant under a change of origin by Valiron's method ([4]).

2. Example. Let

^{*)} Supported in part by the Sakkokai Foundation.