61. An Extension of an Integral. II

By Masahiro Takahashi
Institute of Mathematics, College of General Education, Osaka University

(Comm. by Kinjirô Kunugı, M. J. A., March 12, 1971)

1. Lemmas. This section is the continuation of section 3 in [1]. Assumption 3. \mathcal{I} is an abstract integral with respect to $(\mathcal{S}, \mathcal{G}, J)$.
For each $f \in \mathscr{F}$, we can define a map μ_{f} of $\mathcal{R}(f)$ into J by $\mu_{f}(X)$ $=\mathcal{I}(X, X f)$ for $X \in \mathcal{R}(f)$.

Lemma 13. The map μ_{f} is a J-valued pre-measure on $\mathscr{R}(f)$ for any $f \in \mathscr{F}$.

Lemma 14. If $f, g \in \mathscr{F}$ and $X \in \mathscr{R}(f) \cap \mathscr{R}(g)$, then $X \in \mathscr{R}(f+g)$ and $\mu_{f+g}(X)=\mu_{f}(X)+\mu_{g}(X)$.

Lemma 15. Suppose that $f \in \mathscr{F}, X \in \mathcal{S}$, and $Y \in \bar{\Sigma}$. Then $X Y \in \mathscr{R}(f)$ if and only if $X \in \mathcal{R}(Y f)$, and these mutually equivalent conditions imply that $\mu_{f}(X Y)=\mu_{Y f}(X)$.

Proof. This follows from Lemma 7 in [1].
Let $C V$ be the system of neighbourhoods of $0 \in J$. Denote by Ω the set of all elements $(X, f) \in \widetilde{\Omega}$ satisfying the following condition: for any $\xi, \eta \in \Sigma(f)$ such that $\bar{\xi}=\bar{\eta}=X$ and for any $V \in \varnothing V$, there exists a positive integer n such that $\mu_{f}(\xi(l))-\mu_{f}(\eta(m)) \in V$ for any $l \geqq n$ and $m \geqq n$.

Lemma 16. $(X Y, f) \in \Omega$ if and only if $(X, Y f) \in \Omega$ for any $X, Y \in \bar{\Sigma}$ and $f \in \mathscr{F}$.

Proof. Suppose that $(X Y, f) \in \Omega$. Lemma 11 implies that $(X, Y f) \in \tilde{\Omega}$. Let ξ and η be elements of $\Sigma(Y f)$ such that $\bar{\xi}=\bar{\eta}=X$ and let V be an element of $\mathbb{C V}$. It follows from Corollary to Lemma 7 that $Y \xi, Y \eta \in \Sigma(f)$ and $\overline{Y \xi}=\overline{Y \eta}=X Y$. Hence we have an n such that $\mu_{f}((Y \xi)(l))-\mu_{f}((Y \eta)(m)) \in V$ for any $l \geqq n$ and $m \geqq n$. For this n and for $l \geqq n$ and $m \geqq n$ we have $\mu_{Y f}(\xi(l))-\mu_{Y f}(\eta(m))=\mu_{f}(\xi(l) Y)-\mu_{f}(\eta(m) Y)$ $=\mu_{f}((Y \xi)(l))-\mu_{f}((Y \eta)(m)) \in V$. Thus we have $(X, Y f) \in \Omega$. Conversely suppose that $(X, Y f) \in \Omega$. $(X Y, f) \in \tilde{\Omega}$ follows from Lemma 11. Let ζ_{i} be elements of $\Sigma(f)$ such that $\bar{\zeta}_{i}=X Y$ for $i=1,2$, and let V be an element of $C V$. Lemma 8 implies that there are $\xi_{i} \in \Sigma(Y f)$ such that $\bar{\xi}_{i}=X$ and $\zeta_{i}=Y \xi_{i}$ for $i=1,2$. Since $(X, Y f) \in \Omega$, we have an n such that $\mu_{Y f}\left(\xi_{1}\left(l_{1}\right)\right)-\mu_{Y f}\left(\xi_{2}\left(l_{2}\right)\right) \in V$ for any $l_{i} \geqq n$. For this n and for $l_{i} \geqq n, i=1,2$, we have $\mu_{f}\left(\zeta_{1}\left(l_{1}\right)\right)-\mu_{f}\left(\zeta_{2}\left(l_{2}\right)\right)=\mu_{f}\left(\left(Y \xi_{1}\right)\left(l_{1}\right)\right)-\mu_{f}\left(\left(Y \xi_{2}\right)\left(l_{2}\right)\right)=\mu_{f}\left(\xi_{1}\left(l_{1}\right) Y\right)$ $-\mu_{f}\left(\xi_{2}\left(l_{2}\right) Y\right)=\mu_{Y f}\left(\xi_{1}\left(l_{1}\right)\right)-\mu_{Y f}\left(\xi_{2}\left(l_{2}\right)\right) \in V$, which implies that $(X Y, f) \in \Omega$. Thus the lemma is proved.

