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61. An Extension of an Integral. II
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(Comm. by Kinjir6 KUNUCa, M.Z.A., March 12, 1971)

1. Lemmas. This section is the continuation of section 3 in [1].
Assumption 3. is an abstract integral with respect to (, , J).
For each f e , we can define a map /2f of (f) into J by fix(X)

--J(X, Xf) for X e _@(f).
Lemma 13. The map [ is a J-valued pre-measure on (f) for

any f e .
Lemma 1 4. If f, g e and X e a_(f) (g), then X a_R(f + g)

and/2x/q(X)- fix(X) +/2q(X).
Lemma 1 5. Suppose thatf e , X e , and Y e . Then XY (f)

if and only if X (Yf), and these mutually equivalent conditions
imply that/x(XY) [2r](X).

Proof. This ollows rom Lemma 7 in [1].
Let c/? be the system of neighbourhoods of 0 e J. Denote by 12

the set of all elements (X, f)e satisfying the following condition"
or any $, ] e 27(f) such that --7-X and for any V e cV, there exists
a positive integer n such that /2($(/))-/2(ri(m)) e V for any l>=n and
m>_n.

Lemma16. (XY, f) e [2 if and only if (X, Yf) e 2 for any
X,Y andf.

Proof. Suppose that (XY, f)e [2. Lemma 11 implies that
(X, Yf) e . Let $ and be elements of (Yf) such that ----X and
let V be an element of cV. It follows from Corollary to Lemma 7
that Y, Yr] e 2(f) ,and Y$-Y=XY. Hence we have an n such that

/2x((Y)(/))--/2x((Yi)(m)) e V for any l>=n and m>=n. For this n and for
l>__n and m>=n we have [rf((1))-- /2rf(ri(m))-- [f((1)Y)-- [2((m)Y)
=/2]((Y)(/))-/2]((Y)(m)) e V. Thus we have (X, Yf) e 12. Conversely
suppose that (X, Yf) e t2. (XY, f) ollows rom Lemma 11. Let, be elements o 27(f) such that --XY or i-1,2, and let V be an
element of c(?. Lemma 8 implies that there are $, e (Yf) such that
,=X and ,- Y$, or i= 1, 2. Since (X, Yf) D, we have an n such that
/2r((/))--/2r($(/)) e V for any l>=n. For this n and for l,>=n, i- 1, 2,
we have /2]((/))-/(.(/))- ((Ytx)(/))-/2((Y$)(/))-/($(lx)Y)
--/]($(1)Y) =/2r($(/))--/r($(l)) V, which implies that (XY, f) [2.

Thus the lemma is proved.


