59. Invariancy of Plancherel Measure under the Operation of Kronecker Product

By Nobuhiko TATSUUMA Department of Mathematics, Kyôto University

(Comm. by Kinjirô KUNUGI, M. J. A., March 12, 1971)

1. Let G be a unimodular locally compact group of type I. For such a group, so-called Plancherel formula was given by F. I. Mautner [2], I. E. Segal [3], and H. Sunouchi [4], as follows.

Consider the dual \hat{G} (the set of all equivalence classes of irreducible unitary representations) of G, and put $U_f(\omega) = \int_G f(g)U_g(\omega)dg$ for any function f in $L^1(G)$ and any unitary representation $\omega = \{\mathfrak{H}(\omega), U_g(\omega)\}$ of G. Then, there exists a measure μ (Plancherel measure) over \hat{G} , such that for any function f in $L^1(G) \cap L^2(G)$, the equation (1) is valid.

$$||f||^{2} = \int_{\hat{G}} |||U_{f}(\omega)||^{2} d\mu(\omega).$$
(1)

Here $||| U_f(\omega) |||$ is the Hilbert-Schmidt norm of the operator $U_f(\omega)$.

This formula is considered as an extension of the Plancherel formula for abelian locally compact groups. But in this abelian case, \hat{G} becomes an abelian locally compact group too, and the Plancherel measure μ is just invariant measure over \hat{G} .

The group operation of \hat{G} is given by the ordinary product of characters as functions on G, that is, the Kronecker product of 1-dimensional representation. So the invariancy of Plancherel measure is that, $d\mu(\chi_0 \otimes \chi) = d\mu(\chi)$, for any χ_0 in \hat{G} , (2)

and this is equivalent to,

$$\int_{\hat{\sigma}} |\tilde{f}(\chi_0 \otimes \chi)|^2 d\mu(\chi) = \int_{\hat{\sigma}} |\tilde{f}(\chi)|^2 d\mu(\chi),$$
for any γ_0 in \hat{G} and f in $L^1(G) \cap L^2(G)$.
(3)

Here \tilde{f} shows the Fourier transform of f.

In general case, an analogue of (3) may be constructed as follows. At first, by virtue of (1), we replace Fourier transform \tilde{f} of function f by the operator-valued function $U_f(\omega)$, then the term $|\tilde{f}(\chi_0 \otimes \chi)|^2$ is replaced by $|||U_f(\omega_0 \otimes \omega)||^2$.

On the other hand, the well-known relation $\omega_0 \otimes \Re \sim \sum_{\dim \omega_0} \oplus \Re$, for the regular representation \Re and any representation ω_0 , suggests that, in general form, the factor $(\dim \omega_0)^{-1}$ is needed in the left hand side. So, one of the purposes of this paper is to show the equation (4) for finite dimensional representation ω_0 .