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1. Let F be a finitely generated kleinian group, /2 its region of
discontinuity, A its limit set and 2 (z)Idzl the Poincar metric on/2. We
denote by z] an arbitrary F-invariant union of components of /2. In
this note we assume that 2/F is a finite union of compact Riemann sur-
faces, and consider relations between the Kra and the Ahlfors decom-
positions for H(F, II_).

2. We fix an integer q>=2. Let be an F-module. A mapping
p" F- is called -cocycle if p.--p.. B/p, A, B F. If f e , its
coboundary (f is the cocycle Af. A--f, A F. The first cohomology
space H(F, ) is the space of cocycles actored by the space o cobounda-
ries. The F-modules used in this note are (1) llq_, the vector space
o complex polynomials in one variable o degree at most 2q--2, with
v. A(z)- v(Az)A’(z)l-q, v e I12_2 and A e F and (2) Hr(z])(Mr(z])) the vector
space o holomorphic (meromorphic) unctions on z/, with f.A(z)
=f(Az)A’(z)1-, f e Hr(zl)(M(z])), A e F, where r is an integer. We call
H(,F) and M(,F), the spaces ot holomorphic and meromorphic auto-
morphic orms o weight (--2r) on z] or F, respectively. Two mero-
morphic (holomorphic) Eichler integrals o order 1--q are identified i
they differ an element o//_.. This identification space is denoted by
E_(, F)(E_(,F)). I a, a, ..., a_ are distinct points in zl and

e H(z/, F), then

r(z)-- (z--a1)... (z--a.,_l) 2-()()d/hd

is a potential for (Bers [2]). We denote by Pot () a potential for .
A mapping or" E_q(z], F)HI(F, IIq_) is defined as cr(f)=f. A--f for

f e E_q(z], F) and A e F. A mapping /3*" Hq(z], F)HI(F, II2q_) is
defined by setting /9*()-- Pot (). A-- Pot () for e Hq(z/, F).

Theorem A (The Kra decomposition). Every p e Hi(F, II2q_2) can
be written uniquely as p=a(f)/ fl*() with fe E_(,F) and e H(Z,F).

3. For f e El_q(z], F), the polynomials f(Az)A’(z)l-"--f(z) are the
periods o f, and we write f(Az)A’(z)l-"--f(z)-pdf(z). The periods
determine a canonical isomorphism pd" EI_q(, F)-HI(F, II_). Thus
pdf, f e EI_q(, F), is a cohomology class and pdEl_q(, F) is the image


