87. On H-closedness and the Wallman H-closed Extensions. II*)

By Chien WENJEN California State College at Long Beach, U. S. A. (Comm. by Kinjirô KUNUGI, M. J. A., April 12, 1971)

1. Introduction. By an extension of a space X is meant a space containing a dense set homeomorphic to X (also denoted by X). A point in the extension not belonging to X is represented by a family of closed sets in X with PFIP which consists of the intersections of X and the closures of the neighborhoods of the point. The collection of all maximal families of closed sets in X with PFIP and suitable topology then constitutes an H-closed extensions $\omega(X)$ of X, called the Wallman H-closed extensions and possesing properties similar to those of the Stone-Čech compactification $\beta(T)$ of a completely regular space T. In particular, continuous functions on X can be continuously extended over $\omega(X)$ and there is a variant of the Stone-Čech theorem [8, p. 153] for Hausdorff spaces.

There are two kinds of normal bases for spaces in literature: one is given by Fan and Gottesman for compactificating regular spaces [4] and the other is employed by Frink to identify complete regularity [6]. These bases are, in fact, equivalent in regular spaces. A new concept, called pseudo-normality which is similar to but more general than normality, is introduced as a characterization of complete regularity. The Fan-Gottesman compactification X^* of a completely regular space X is homeomorphic to the Stone-Čech compactification βX and is also homeomorphic to Aleksandrov $\alpha' X$ [1, p. 405].

The Stone-Weierstrass approximation theorem and the Tietze extension theorem will be generalized to Hausdorff spaces. Aleksandrov [2, Surveys, p. 54] and Pomonarov raised the question: for each completely regular space T whether the Stone-Weierstrass theorem holds in the Wallman *H*-closed extension $\omega(T)$ (topologically equivalent to $\tau(T)$ in [2]). A theorem due to Fan and Gottesman [4] sheds some light on the problem and an affirmative answer is given in § 4.

2. The Wallman *H*-cosed extensions.

Let X be a space, \mathbb{C} the family of all closed subsets of X, and W(X) the collection of all subfamilies of \mathbb{C} which possess the PFIP and are

^{k)} Presented to the Amer. Math. Soc., Aug., 28 (1970).

The work was done during Sabbatical Leave, Spring (1970).