84. The Additive Structure of the Unrestricted Z_{p}-Bordism Groups $\mathcal{O}_{n}\left(\mathrm{Z}_{p}\right)$

By Ching-Mu Wu*)
Kyoto University, Kyoto and Tunghai University, Taiwan
(Comm. by Kinjirô Kunugi, m. J. A., April 12, 1971)

Introduction. In this note we compute the additive structure of $\mathcal{O}_{n}\left(Z_{p}\right)$ and obtain that for $n \geqslant 0$,

$$
\mathcal{O}_{n}\left(Z_{p}\right) \approx \begin{cases}2 \text {-torsion } & \text { for } n \text { odd, } \\ \text { free }+2 \text {-torsion } & \text { for } n \text { even }\end{cases}
$$

where the 2-torsion part consists of elements of order two.
We also compute the generators of $\mathcal{O}_{n}\left(Z_{3}\right)$ for $n \leqslant 7$, and study its connection with the Ω-module structure of $\mathcal{O}_{*}\left(Z_{3}\right)$ which we have determined in [5].

1. The additive structure of $\mathcal{O}_{n}\left(\boldsymbol{Z}_{p}\right)$. We consider all $\left(M^{n}, T\right)$ of Z_{p}-actions which form the Z_{p}-bordism group $\mathcal{O}_{n}\left(Z_{p}\right)$. First we shall need the exact sequence

$$
0 \longrightarrow \Omega_{n} \xrightarrow{i_{*}} \mathcal{O}_{n}\left(Z_{p}\right) \xrightarrow{\nu} \mathfrak{M}_{n}\left(Z_{p}\right) \xrightarrow{\partial} \tilde{\Omega}_{n-1}\left(Z_{p}\right) \longrightarrow 0
$$

which we already have in [5, Cororally 1.1]. Here $\widetilde{\Omega}_{n-1}\left(Z_{p}\right)$ is the reduced, fixed point free, Z_{p}-bordism group, and $\mathfrak{M}_{n}\left(Z_{p}\right)=\sum_{k \geqslant 0} \Omega_{n-2 k}\left(B\left(U\left(k_{1}\right)\right.\right.$ $\left.\left.\times \cdots \times U\left(k_{p-1}\right)\right)\right), k=k_{1}+\cdots+k_{(p-1) / 2} . \quad$ Moreover i_{*} is defined by $i_{*}\left[M^{n}\right]$ $=\left[M \times Z_{p}, \mathbf{1} \times \sigma\right] \in \mathcal{O}_{n}\left(Z_{p}\right)$ where σ is the map of period p which interchanges elements of Z_{p}; ν is defined by sending $\left[M^{n}, T\right] \in \mathcal{O}_{n}\left(Z_{p}\right)$ to the normal bundle over the fixed point set of $T, \sum_{k \geqslant 0}\left[\nu_{k} \rightarrow F_{T}^{n-2 k}\right] \in \mathfrak{M}_{n}\left(Z_{p}\right)$, where $\nu_{k} \rightarrow F_{T}^{n-2 k}$ is the complex k-dimensional normal bundle over the union $F_{T}^{n-2 k}$ of the ($n-2 k$)-dimensional components of the fixed point set of T, and ∂ is defined by sending $\sum\left[V^{n-2 k}, g_{k}\right]=\sum\left[\xi_{k} \rightarrow V^{n-2 k}\right] \in \mathfrak{M}_{n}\left(Z_{p}\right)$ to the sphere bundles $\sum\left[S\left(\xi_{k}\right), \rho\right] \in \tilde{\Omega}_{n-1}\left(Z_{p}\right)$ where $\rho=\exp (2 \pi i / p)$ and $\xi_{k} \rightarrow V^{n-2 k}$ is the complex k-plane bundle classified by the map $g_{k}: V^{n-2 k}$ $\rightarrow B\left(U\left(k_{1}\right) \times \cdots \times U\left(k_{(p-1) / 2}\right)\right)$.

We also need several facts provided by Conner and Floyd in [3]:
For $X=B\left(U\left(k_{1}\right) \times \cdots \times U\left(k_{(p-1) / 2}\right)\right), \quad \Omega_{n}(X) \approx \sum_{j=0}^{n} H_{j}\left(X ; \Omega_{n-j}\right)$, [3, 15.2].

For a Ω-base $\left\{\left[S^{2 i-1}, \rho\right]\right\}$ of $\tilde{\Omega}_{*}\left(Z_{p}\right),[3,34.3],\left[S^{2 i-1}, \rho\right]$ has order p^{a+1} where $a(2 p-2)<2 i-1<(a+1)(2 p-2)$, [3, 36.1].

And if $2 i-1=a(2 p-2)+1$, then $p^{a}\left[S^{2 i-1}, \rho\right]=b\left[S^{1}, \rho\right] \cdot[C P(p-1)]^{a}$ where $b \not \equiv 0(\bmod p)$, [3, 36.2].

[^0]
[^0]: *) During the preparation of this paper, the author was a Fellow of the United Board for Christian Higher Education in Asia.

