79. On a Convergence Theorem for Sequences of Holomorphic Functions

By Yoshikuni NAKAMURA and Niro YANAGIHARA

(Comm. by Kinjirô KUNUGI, M. J. A., April 12, 1971)

Let D be the unit disk $\{|z| < 1\}$ and C be its circumference $\{|z|=1\}$. For two numbers $\alpha, \beta, 0 \leq \alpha < \beta \leq 2\pi$, we put

 $\begin{array}{l} S(\alpha, \beta) = \text{the sector } \{z = re^{i\theta} ; \alpha \leq \theta \leq \beta, 0 \leq r < 1\}, \\ C(\alpha, \beta) = \text{the arc } \{z = e^{i\theta} ; \alpha \leq \theta \leq \beta\}, \\ S_{R}(\alpha, \beta) = S(\alpha, \beta) \cap \{|z| < R\}, 0 < R < 1, \\ C_{R}(\alpha, \beta) = \text{the arc } \{z = Re^{i\theta} ; \alpha \leq \theta \leq \beta\}. \end{array}$

We say that a function f(z), holomorphic on $S(\alpha, \beta)$, belongs to a class $N_{(\alpha, \beta)}$ if

 $m(r, f; \alpha, \beta) = \int_{\alpha}^{\beta} \log^{+} |f(re^{i\theta})| d\theta \text{ is bounded for } 0 \leq r < 1.$

The class $N_{(0,2\pi)}$ is denoted simply by N and called the class of functions of bounded characteristic [1].

A function f(z), holomorphic in $S(\alpha, \beta)$, is said to belong to a class $N^*_{(\alpha,\beta)}$ if $f(z) \in N_{(\alpha+\delta,\beta-\delta)}$ for every $\delta, 0 < \delta < (\alpha+\beta)/2$.

It is proved in [2], as a localization of the Fatou's theorem, that

A function f(z), holomorphic in $S(\alpha, \beta)$, can be written as a quotient of two bounded functions in $S(\alpha+\delta,\beta-\delta)$ for every $\delta, 0 < \delta < (\alpha+\beta)/2$, if and only if f(z) belongs to $N^*_{(\alpha,\beta)}$. In particular, a function f(z) of the class $N^*_{(\alpha,\beta)}$ has finite angular limits almost everywhere on $C(\alpha, \beta)$, and if $\{z_n\}$ are the zeros of f(z) in $S(\alpha+\delta,\beta-\delta)(\delta>0$ is fixed), we have

$$\Sigma(1-|z_n|) < \infty.$$

In this note we will prove, using the method of [2], a localization of the theorem of Khintchine-Ostrovski [3, p. 83], i.e.,

Theorem 1. Let a sequence $\{f_n(z)\} \subset N^*_{(\alpha,\beta)}$ satisfy the conditions: (i)

$$\int_{\alpha}^{\beta} \log^{+} |f_{n}(re^{i\theta})| d\theta \leq K, 0 \leq r < 1,$$
(1)

where K is a constant independent of n and r.

(ii) There is a set $E \subset C(\alpha, \beta)$, meas(E) > 0, on which $\{f_n(e^{i\theta})\}$ converges in measure, where $f_n(e^{i\theta})$ denotes the radial limit of $f_n(z)$ at $e^{i\theta}$.

Then $\{f_n(z)\}$ converges to a function f(z) uniformly on any compact set in $S(\alpha, \beta)$. f(z) is holomorphic in $S(\alpha, \beta)$ and has finite radial limit $f(e^{i\theta})$ at almost every point $e^{i\theta} \in C(\alpha, \beta)$, and $\{f_n(e^{i\theta})\}$ converges in measure to $f(e^{i\theta})$ on the set E.