110. An Analogue of the Paley-Wiener Theorem for the Heisenberg Group

By Keisaku KUMAHARA Department of Applied Mathematics, Osaka University

(Comm. by Kinjirô KUNUGI, M. J. A., May 12, 1971)

1. Introduction. Let $R(\operatorname{resp} C)$ be the real (resp. complex) number field as usual. Let G be the *n*-th Heisenberg group, i.e. the group of all real matrices of the form

$$\begin{pmatrix} 1 & a & c \\ 0 & I_n & b \\ 0 & 0 & 1 \end{pmatrix}$$
 (1.1)

where $a = (a_1, \dots, a_n) \in \mathbb{R}^n$, $b = {}^t(b_1, \dots, b_n) \in \mathbb{R}^n$, $c \in \mathbb{R}$ and I_n is the identity matrix of *n*-th order. Let *H* be the abelian normal subgroup consisting of the elements of the form (1.1) with a=0. For any real η we

denote by χ_{η} the unitary character of H defined by $\chi_{\eta} : \begin{pmatrix} 1 & 0 & c \\ 0 & I_n & b \\ 0 & 0 & 1 \end{pmatrix}$

 $\rightarrow e^{2\pi i \eta c}$. Let U^{η} be the unitary representation of G induced by χ_{η} . Then the Plancherel theorem can be proved by means of $U^{\eta}(\eta \in \mathbb{R})$ (see e.g. [4]). However, as we have seen in the case of euclidean motion group ([2]), in order to prove an analogue of the Paley-Wiener theorem we have to consider the representations which have more parameters.

Let \hat{H} be the dual group of H. In this paper we consider the Fourier transform defined on $\hat{H} \cong \mathbb{R}^{n+1}$.

Let $C_{\circ}^{\infty}(G)$ be the set of all infinitely differentiable functions on Gwith compact support. For any $\hat{\xi} \in \mathbf{R}^n$ and $\eta \in \mathbf{R}$ we denote by $U^{\xi,\eta}$ the unitary representation of G induced by the unitary character $\chi_{\xi,\eta}$ of

 $H: \chi_{\varepsilon,\eta} \begin{pmatrix} 1 & 0 & c \\ 0 & I_n & b \\ 0 & 0 & 1 \end{pmatrix} = e^{2\pi i \langle \varepsilon, b \rangle + 2\pi i \eta c}.$ We define the (operator valued) Fourier

transform T_f of $f \in C_c^{\infty}(G)$ by

$$T_f(\xi,\eta) = \int_G f(g) U_g^{\xi,\eta} dg,$$

where dg is the Haar measure on G. Then $T_f(\xi, \eta)$ is an integral operator on $L_2(\mathbb{R}^n)$ (§ 2). Denote by $K_f(\xi, \eta; x, y)$ $(x, y \in \mathbb{R}^n)$ be the kernel function of $T_f(\xi, \eta)$. We shall call K_f the scalar Fourier transform of f.

The purpose of this paper is to determine the image of $C^{\infty}_{c}(G)$ by the scalar Fourier transform (analogue of the Paley-Wiener theorem).