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As for the applications of Lyapunov functions to the stability
problems of difference equations with discrete variable, we can find
some results in [2, 3, 5], and [4] concerning the criteria of Popov type
for the absolute stability. In this paper, we shall show some other
results including the construction of Lyapunov functions, that is, the
so-called converse theorems, and the applications to perturbed systems.

The following is a result to show the existence of Lyapunov func-
tions for linear systems, which will be often used to discuss the stability
problems for perturbed systems.

Theorem 1. Suppose that A(t) be an n x n matrix defined for tI,
and the trivial solution of
(1) x(t+ )=A(t)x(t), X(to)-Xo, t>__to
is generalized exponentially asymptotically stable, where I is a set of
nonnegative integers and to e I. Then there exists a function V(t, x)
satisfying the following conditions"
(a) V(t, x) is defined for t e I and [xl c, Lipschitzian in x for a

function K(t);
(b) Ixl<= V(t, x)<=K(t) lxl, t e I,
(c) for any solution x(t) of (1),

AV(t, x(t))__< (1--exp (--Ap(t)))V(t, x(t)), t>=to.
This theorem will be proved by an analogous method as in differ-

ential equations, if we define a function V(t, x) such that
V(t, x)=sup Ix(t+a, t, x)l e(+)-().

For the definition of the generalized exponentially asymptotic
stability, see [1].

Theorem 2. Suppose tha$

( ) A() is defined for e I, and the rivial solution of (1) is general-
ized exponentially asymptotically sable
(ii) F($, x) is defined for t I and Ixl<p, and IF($, x)l<:g(t, Ixl), I,
]xlCp, where g($,r) is defined for $eI and O<:r,g($, 0):_0, and
nondecreasing in r for any t.

Then the s$abili$y or asymptotic stability of the trivial solution of


