106. An Operator-Valued Stochastic Integral

By D. Kannan*) and A. T. Bharucha-Reid**)
Center for Research in Probability
Wayne State University, Detroit, Michigan 48202
(Comm. by Kinjirô Kunugi, m. J. A., May 12, 1971)

1. Introduction. In this paper we define a stochastic integral of the form

$$
\begin{equation*}
\int_{b}^{a} \xi(t, \omega) d w(t, \omega) \tag{1}
\end{equation*}
$$

where $\xi(t, \omega)$ is a second order Hilbert space-valued random function and $w(t, \omega)$ is a Hilbert space-valued Brownian motion or Wiener process. The stochastic integral to be defined is operator-valued; in particular, it is a function from a probability space into the space of Schmidt class operators on a Hilbert space. Hilbert space-valued stochastic integrals of operator-valued functions have been studied by several authors (cf., Mandrekar and Salehi [7], and Vakhaniya and Kandelski [10]). We first introduce some definitions and concepts which will be used in the development of the integral.

Let $(\Omega, \mathcal{A}, \mu)$ be a complete probability space, and let \mathscr{S} be a real separable Hilbert space with inner product $\langle\cdot, \cdot\rangle$. A mapping $x: \Omega$ $\rightarrow \mathfrak{S}_{2}$ is said to be a random element in \mathfrak{F}, or an $\mathscr{S C}^{2}$-valued random variable, if for each $y \in \mathscr{S},\langle x(\omega), y\rangle$ is a real-valued random variable. Similarly, a mapping $L: \Omega \rightarrow \mathcal{B}(\mathfrak{S})$ (where $\mathscr{B}(\mathfrak{S})$ is the Banach algebra of endomorphisms of \mathscr{S}_{g}) is said to be a random operator if, for every $x, y \in \mathscr{S}_{\mathcal{C}},\langle L(\omega) x, y\rangle$ is a real-valued random variable.

Let x and y be two given elements in \mathfrak{S}. The tensor product of x and y, written $x \otimes y$, is an endomorphism in \mathscr{S} whose defining equation is $(x \otimes y) h=\langle h, y\rangle x, h \in \mathfrak{S}$. A simple consequence of this definition is $\left(x_{1} \otimes y_{1}\right)\left(x_{2} \otimes y_{2}\right)=\left\langle x_{2}, y_{1}\right\rangle\left(x_{1} \otimes y_{2}\right)$. We refer to Schattan [8] for a discussion of the operator $x \otimes y$ and its properties. Now let $x(\omega)$ and $y(\omega)$ be two \mathscr{S}_{2}-valued random variables; and consider the tensor product $x(\omega) \otimes y(\omega)$. Falb [3] (cf. also [5]) has shown that the operator-valued function $x(\omega) \otimes y(\omega)$ is measurable; i.e., it is a random operator. Falb established the measurability of $x(\omega) \otimes y(\omega)$ using open sets; however, it follows easily from the definitions of a random operator and the tensor product operator.

An \mathscr{S}_{2}-valued random function $\{w(t, \omega), t \in[a, b]\}$ is said to be a

[^0]
[^0]: *) Present address: Department of Mathematics, New York University, University Heights, Bronx, New York 10453.
 **) Research supported by National Science Foundation Grant No. GP-13741.

