100. On Power Semigroups

By Nobuaki KUROKI Department of Mathematics, Nihon University, College of Science and Engineering

(Comm. by Kenjiro Shoda, M. J. A., May 12, 1971)

1. If X is a semigroup, then the product of non-empty subsets of X can be defined in a natural way to produce a semigroup, which is called the power semigroup of X ([4]), and is denoted by $\mathfrak{T}(X)$. It is obvious that semigroups X and Y are isomorphic, then the power semigroups $\mathfrak{T}(X)$ and $\mathfrak{T}(Y)$ are isomorphic. This note is devoted to the converse question: if $\mathfrak{T}(X)$ and $\mathfrak{T}(Y)$ are isomorphic, must X and Y be isomorphic? We will answer this question for commutative semigroups whose ideals are all principal ideals. In the case for finite groups and chains, see [4].

2. By a partially ordered semigroup we mean a set X satisfying

(P1) X is a semigroup;

(P2) X is a partially ordered set under a relation \leq ;

(P3) $a \leq b$ implies $ac \leq bc$ and $ca \leq cb$ for all $c \in X$ ([1], p. 153).

Let X and Y be partially ordered semigroups. By an o-isomorphism of X onto Y we mean a one-to-one mapping \emptyset of X onto Y such that

(01) $\emptyset(ab) = \emptyset(a)\emptyset(b)$ for all $a, b \in X$;

(02) $a \leq b$ in X if and only if $\theta(a) \leq \theta(b)$ in Y.

3. Let X be a semigroup and $\mathfrak{T}(X)$ the set of all non-empty subsets of X. A binary operation is defined in $\mathfrak{T}(X)$ as follows: For A, $B \in \mathfrak{T}(X)$

$$AB = \{ab; a \in A, b \in B\}.$$

Then it is well-known and is easily seen that $\mathfrak{T}(X)$ is a semigroup. This semigroup $\mathfrak{T}(X)$ is called the power semigroup of X.

We define a relation \leq on $\mathfrak{T}(X)$ as follows; For $A, B \in \mathfrak{T}(X)$,

$$A \leq B$$
 if and only if $A \subseteq B$.

Then, as is well-known ([2], p. 132), $\mathfrak{T}(X)$ is a partially ordered set under this relation \leq satisfying the condition (P3), that is, $\mathfrak{T}(X)$ is a partially ordered semigroup.

Let $\mathfrak{Z}(X)$ be the set of all ideals of a semigroup X and $\mathfrak{P}(X)$ the set of all principal ideals of X. Then clearly $\mathfrak{Z}(X)$ is a subsemigroup of $\mathfrak{T}(X)$.

4. Proposition 1. Let \emptyset be an o-isomorphism of $\mathfrak{T}(X)$ onto $\mathfrak{T}(Y)$ and \emptyset^* the restriction of \emptyset on $\mathfrak{Z}(X)$. Then \emptyset^* maps $\mathfrak{Z}(X)$ onto $\mathfrak{Z}(Y)$.