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This paper is a continuation of [3]. Let D be an s-local domain
which is a principal ideal ring. Then every right (left) ideal is an ideal
and every ideal of D is a power of J(D)(see [2]). We put J(D)=p,D
=Dp,. Then every non-unit d ¢ D can be uniquely expressed as d=pke
=¢’'pk, where ¢, ¢’ are units of D and k is an integer.

Let M be a D-module. An element x in M has height n if x is divis-
ible by p? but not by pr**; it has infinite height if it is divisible by p?
for every n. We write h(x) for the height of x; thus h(x) is a (non-
negative) integer or the symbol co. Terminology and notation will be
taken from [3].

Lemma 1. Let D be an s-local domain which is a principal ideal
ring, let M be a D-module and let S be o submodule with no elements of
infinite height. Suppose that the elements of order J(D) in S have the
same height in S as in M. Then S is pure.

Lemma 2. Let D be an s-local domain which is a principal ideal
ring and let M be a D-module. Suppose that all elements of order J(D)
in M have infinite height. Then M is divisible.

An R-module is said to be reduced if it has no non-zero divisible
submodules.

Theorem 1. Let R be a bounded Dedekind prime ring and let P
be a prime ideal of R. If M is a P-primary reduced R-module, then M
possesses a direct summand which is isomorphic to eR/eP™, where e is
a uniform idempotent contained in Rp.

By Theorem 1, we have

Theorem 2. Let R be a bounded Dedekind prime ring. Then

(i) An finitely generated indecomposable R-module cannot be
mixed and is not divisible, i.e., it is either torsion-free or torsion. In
the former case, it is isomorphic to a uniform right ideal of R and in
the latter case, it is isomorphic to eR[eP™ for some prime ideal P, where
e is a uniform idempotent contained in Rp.

(ii)) An indecomposable torsion R-module is either of type P> or
isomorphic to eR/eP™ for some prime ideal P, where e is a uniform
tdempotent contained in Rp.

Lemma 3. Let D be an s-local ring with J(D)=p,D which is a
principal ideal domain. Let M be a D-module, let H be a pure submodule



