137. Determination of $\tilde{K}_{O}(X)$ by $\tilde{K}_{S o}(X)$ for 4-Dimensional CW-Complexes

By Yutaka Ando
Mathematical Institute, Tokyo University of Fisheries (Comm. by Kenjiro Shoda, M. J. A., Sept. 13, 1971)

0. For a connected finite 4-dimensional $C W$-complex X we denote the group of stable vector bundles over X by $\tilde{K}_{o}(X)$, and the group of orientable stable vector bundles over X by $\tilde{K}_{S o}(X)$. In the previous paper [2] S. Sasao and the author determined the group structures of $\tilde{K}_{s o}(X)$ by cohomology rings. In this note we shall determine the relation between $\tilde{K}_{o}(X)$ and $\tilde{K}_{S o}(X)$. Our results include that $\tilde{K}_{o}(X)$ $\cong \tilde{K}_{S O}(X)+H^{1}\left(X ; Z_{2}\right)$ if and only if $S q^{1} H^{1}\left(X ; Z_{2}\right)=0$. The author wishes to thank Professor S. Sasao for his valuable suggestions.
1. We can easily prove the following

Proposition 1. The sequence

$$
0 \longrightarrow \tilde{K}_{S o}(X) \xrightarrow{i} \tilde{K}_{o}(X) \xrightarrow{W_{1}} H^{1}\left(X ; Z_{2}\right) \longrightarrow 0
$$

is exact, where i is a map which forgets the orientation and W_{1} maps each class [ξ] to the first Whitney class $W_{1}(\xi)$ of a bundle ξ which represents [$\xi]$.

This proposition shows that $\tilde{K}_{o}(X)$ is an element of $\operatorname{EXT}\left(H^{1}\left(X ; Z_{2}\right)\right.$, $\left.\tilde{K}_{s o}(X)\right)$. So we investigate this group.

Proposition 2. There exists an isomorphism

$$
\varphi: E X T\left(H^{1}\left(X ; Z_{2}\right), \tilde{K}_{S o}(X) \longrightarrow \sum_{i=1}^{r}\left(\tilde{K}_{S o}(X) / 2 \tilde{K}_{S o}(X)\right)_{i}\right.
$$

where $r=\operatorname{dim} H^{1}\left(X ; Z_{2}\right)$.
Proof. We assume that $H^{1}\left(X ; Z_{2}\right) \cong \sum_{i=1}^{r} Z_{2}\left[\alpha_{i}\right]$, where [] denotes the generator. Consider the follwing exact sequence

$$
0 \longrightarrow H \xrightarrow{i} F \xrightarrow{j} H^{1}\left(X ; Z_{2}\right) \longrightarrow 0
$$

where F is a free abelian group generated by $\left\{f_{i}\right\}$ such that $j\left(f_{i}\right)=\alpha_{i}$. By $\left\{h_{i}\right\}$ we denote generators of H corresponding to $\left\{2 f_{i}\right\}$ via i. Then we know that there exists an isomorphism
$\rho: \operatorname{EXT}\left(H^{1}\left(X ; Z_{2}\right), \tilde{K}_{S o}(X)\right) \rightarrow H O M\left(H, \tilde{K}_{S O}(X)\right) /$ image $H O M\left(F, \tilde{K}_{S o}(X)\right)$ defined as follows. For an exact sequence

$$
0 \longrightarrow \tilde{K}_{S o}(X) \longrightarrow G \longrightarrow H^{1}\left(X ; Z_{2}\right) \longrightarrow 0,
$$

we take a set $\left\{g_{i}\right\}$ of elements of G going to $\left\{\alpha_{i}\right\}$. And we take a set $\left\{\gamma_{i}\right\}$ of elements of $\tilde{K}_{S O}(X)$ going to $\left\{2 g_{i}\right\}$. Now we put $\rho(G)\left(h_{i}\right)=\gamma_{i}$ then $\rho(G)$ is uniquely defined as an element of $H O M\left(H, \tilde{K}_{s o}(X)\right) / 2 H O M\left(H, \tilde{K}_{S o}(X)\right)$ $\cong H O M\left(H, \tilde{K}_{S O}(X)\right) /$ image $\operatorname{HOM}\left(F, \tilde{K}_{S o}(X)\right)$. Let $p: \tilde{K}_{S o}(X) \rightarrow \tilde{K}_{S O}(X)$

