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The generalized decomposition numbers of the symmetric group
are rational integers ([5], [13]), but those of the alternating group are
not necessarily rational integers ([5]). The main purpose of this paper
is to give a proof of the following theorem ([4]).

Theorem 1. The generalized decomposition numbers of the
alternating group for p=2 are rational integers.

Throughout this paper, we consider the representations of groups
over the algebraically closed field of characteristic 2. Let x be a 2-
element of the alternating group A,, and let N ,(x) be the normalizer
of x in A,. In section 2 we shall prove that every 2-block B* of N ,(x)
is characterized by a 2-core [«,], and then B* with the 2-core [«,] deter-
mines the 2-block B, of A, with the same 2-core [a;].

1. The generalized symmetric group S(a;,2!) is the semi-direct
product of the normal subgroup Q; of order (2/)** and the subgroup S¥,
which is isomorphic to the symmetric group S,,([9]):

(LD S(a,,2)=55Q:, SENQ=1, Si=S.,.

Evidently we have S(a,, 1)=S,,. Since S(a;,29)/Q,=S,,, we see that
every modular irreducible character of S(a,, 2%) is given by the modular
irreducible character of S,,.

Let G be a subgroup of the symmetric group S, and let us denote
by G* the subgroup GN A4, of G. Then we have G=G* or (G: G*)=2.
Since (Q,: Q;)=2 for i>0, we see that
(1.2 S(a;, 29*=8¥Q;.

Let y be an arbitrary 2-regular element of S(a,,2¢). Then y is the
even permutation and hence y e S(a,, 29)*. It follows from S(a,, 29)*/Q;
=S8, that every representation of S(a;, 2?)* obtained by restricting the
modular irreducible representation of S(a;, 2) remains irreducible. If
we denote by ¢! (¢=1,2, - - -, m,) the modular irreducible characters of
S, then the modular irreducible characters of S(a,, 2% and S(a,,29)*
are also given by ¢i(y). This implies that the representation U7 of
S(a;, 2%) induced from the indecomposable constituent U: of the regular
representation of S(a;,29)* is the indecomposable constituent of the
regular representation of S(a,, 2%) ([8]) and hence if we denote by &,, and



