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This paper is to give, succeeding the investigation in the previous
paper [2], another type of closed graph theorem generalizing and
simplifying the result obtained in [1].

A linear topological space E is called a G-space if there exist count-
able S-filters (n= 1, 2, ..)(i.e. each ) has a countable basis {S} such

that ( S-) satisfying the following condition (.).

(.) For any filter in E which is disjoint from every (n-1,
2, ...), there exist a complete metric group G and a continuous homo-
morphism f from G into E such that for any neighbourhood U of 0 in
E, f(U) absorbs" some element B in . In the sequel, we call G-system
the set of countable S-filters ) (n- 1, 2, ) satisfying the condition (.).

In the definition above, we can make, without altering the meaning
of definition, further restrictions" (1) G is abelian and (2) f is surjec-
tive. For (2), if f is not surjective, we can replace G by G E (giving
discrete topology on E) and f by f’ defined as f’(x, y)= f(x) + y for x e G
and y e E. In the sequel we always suppose G to be abelian.

We can see easily that the class of G-spaces, as in the case of GN-
spaces (in [2]), is closed under the following operations"

(1) The image F--(E) of a G-space E by a continuous linear
mapping is a G-space.

(2) The sequentially closed subspace F of a G-space E is a G-
space.

(3) The product space E-I-[ E of G-space En (n-l, 2,...) is a

G-space.
(4) The inductive limit E of G-spaces E (n=1,2,...) is a G-

space.
First we prove that every complete metric linear space E is a G-

space. Let U be the unit ball in E and be the filter generated by
E\nU (n=1,2,...). Then E is a G-space with G-system = (n
=1,2, ...).

Corresponding to the closed graph theorem for GN-spaces in [2],

1) A set A is said to absorb a set B, if there exists a positive real number
such that fiBcA for all in (0,a].


