28. On Closed Graph Theorem. II

By Michiko Nakamura
Department of Mathematics, Faculty of Science, Science University of Tokyo
(Comm. by Kinjirô Kunugi, m. J. A., Feb. 12, 1972)

This paper is to give, succeeding the investigation in the previous paper [2], another type of closed graph theorem generalizing and simplifying the result obtained in [1].

A linear topological space E is called a G-space if there exist countable S-filters $\Phi_{n}(n=1,2, \cdots)$ (i.e. each Φ_{n} has a countable basis $\left\{S_{k}\right\}$ such that $\bigcap_{k=1}^{\infty} S_{k}=\phi$) satisfying the following condition (*).
(*) For any filter Ψ in E which is disjoint from every $\Phi_{n}(n=1$, $2, \cdots)$, there exist a complete metric group G and a continuous homomorphism f from G into E such that for any neighbourhood U of 0 in $E, f(U) a b s o r b s^{1)}$ some element B in Ψ. In the sequel, we call G-system the set of countable S-filters $\Phi_{n}(n=1,2, \cdots)$ satisfying the condition ($*$).

In the definition above, we can make, without altering the meaning of definition, further restrictions: (1) G is abelian and (2) f is surjective. For (2), if f is not surjective, we can replace G by $G \times E$ (giving discrete topology on E) and f by f^{\prime} defined as $f^{\prime}(x, y)=f(x)+y$ for $x \in G$ and $y \in E$. In the sequel we always suppose G to be abelian.

We can see easily that the class of G-spaces, as in the case of $G N$ spaces (in [2]), is closed under the following operations:
(1) The image $F=\varphi(E)$ of a G-space E by a continuous linear mapping φ is a G-space.
(2) The sequentially closed subspace F of a G-space E is a Gspace.
(3) The product space $E=\prod_{n} E_{n}$ of G-space $E_{n}(n=1,2, \ldots)$ is a G-space.
(4) The inductive limit E of G-spaces $E_{n}(n=1,2, \ldots)$ is a G space.

First we prove that every complete metric linear space E is a G space. Let U be the unit ball in E and Φ be the filter generated by $E \backslash n U(n=1,2, \cdots)$. Then E is a G-space with G-system $\Phi_{n}=\Phi$ (n $=1,2, \cdots$.

Corresponding to the closed graph theorem for $G N$-spaces in [2],

1) A set A is said to absorb a set B, if there exists a positive real number α such that $\beta B \subset A$ for all β in $(0, \alpha]$.
