
No. 2] Proc. Japan Acad., 48 (1972) 81

21. On the Topological Spaces with the .property

By Tsugio TANI and Yoshikazu YASUI
Department of Mathematics, Osaka Kyoiku University
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Recently, P. Zenor [9] defined the topological class contained in
the countably paracompact spaces. It is the generalization of C. H.
Dowker ([l], Theorem 2) or F. Isikawa [2]. On the other hand, S.
Sasada [7] defined the c-spaces (i=1,2) in addition the normality
(normal 3-spaces are c2-spaces).

The purpose o this paper is to study some characterizations and
properties of 3-spaces. F. Isikawa [2] proved the following theorem"

Theorem 1. In order that a topological space be countably para-
compact, it is necessary and sufficient that if a decreasing sequence
{F i- 1, 2, } of closed sets with vacuous intersection is given, then
there exists a decreasing sequence {G i-1, 2,...} of open sets such

that {G i= 1, 2, } has a vacuous intersection and G F for i= 1, 2,

At this time, we can naturally define the -space, that is, a topolo-
gical spaceX is said to be a -space i every monotone decreasing)amily
{F c e A} of closed sets with the vacuous intersection has the monotone
decreasing family {G c e A} of open sets such that ( G- andGF
for each a e A. From the above definition, the 3-property is weakly
hereditary2) and the following is trivial"

Proposition. In order that a topological space X be a 3-space, it
is necessary and sufficient that every monotone mcreas,ng open cover-
ing {G[c<2} of X has the monotone increasing open covering
{U c } of X such that GU for each tr .

In order to prove some theorems, we shall use the following"
Lemma. Let X be a topological space, then X is countabl.y para-

compact if and only if every monotone increasing countable open cover-

refinement.ing II of X has the a-cush,oned open
The proof of this lemma is easily seen from Theorem 1.
Theorem 2. In a topological space X, the following properties are

equivalent"

1) A family {Fia e A} of subsets of X is monotone increasing (resp. monotone
decreasing) if A is well ordered and FFa (resp. FFa)for each a_>/; c,/ e A.

2) A topological property P is said to be weakly hereditary if every closed
subspace of X has the property P whenever X has the property P.

3) See E. Michael [4].


