21. On the Topological Spaces with the \mathfrak{B} -property

By Tsugio TANI and Yoshikazu YASUI Department of Mathematics, Osaka Kyoiku University (Comm. by Kinjirô KUNUGI, M. J. A., Feb. 12, 1972)

Recently, P. Zenor [9] defined the topological class contained in the countably paracompact spaces. It is the generalization of C. H. Dowker ([1], Theorem 2) or F. Isikawa [2]. On the other hand, S. Sasada [7] defined the α_i -spaces (i=1,2) in addition the normality (normal \mathfrak{B} -spaces are α_i -spaces).

The purpose of this paper is to study some characterizations and properties of \mathfrak{B} -spaces. F. Isikawa [2] proved the following theorem:

Theorem 1. In order that a topological space be countably paracompact, it is necessary and sufficient that if a decreasing sequence $\{F_i | i=1, 2, \cdots\}$ of closed sets with vacuous intersection is given, then there exists a decreasing sequence $\{G_i | i=1, 2, \cdots\}$ of open sets such that $\{\overline{G_i} | i=1, 2, \cdots\}$ has a vacuous intersection and $G_i \supset F_i$ for $i=1, 2, \cdots$.

At this time, we can naturally define the \mathfrak{B} -space, that is, a topological space X is said to be a \mathfrak{B} -space if every monotone decreasing¹⁾family $\{F_{\alpha} \mid \alpha \in A\}$ of closed sets with the vacuous intersection has the monotone decreasing family $\{G_{\alpha} \mid \alpha \in A\}$ of open sets such that $\bigcap_{\alpha \in A} \overline{G_{\alpha}} = \emptyset$ and $G_{\alpha} \supset F_{\alpha}$ for each $\alpha \in A$. From the above definition, the \mathfrak{B} -property is weakly hereditary²⁾ and the following is trivial:

Proposition. In order that a topological space X be a \mathfrak{B} -space, it is necessary and sufficient that every monotone increasing¹⁾ open covering $\{G_{\alpha} | \alpha < \lambda\}$ of X has the monotone increasing open covering $\{U_{\alpha} | \alpha < \lambda\}$ of X such that $G_{\alpha} \supset \overline{U_{\alpha}}$ for each $\alpha < \lambda$.

In order to prove some theorems, we shall use the following:

Lemma. Let X be a topological space, then X is countably paracompact if and only if every monotone increasing countable open covering \mathfrak{U} of X has the σ -cushioned³⁾ open refinement.

The proof of this lemma is easily seen from Theorem 1.

Theorem 2. In a topological space X, the following properties are equivalent:

3) See E. Michael [4].

¹⁾ A family $\{F_{\alpha} | \alpha \in A\}$ of subsets of X is monotone increasing (resp. monotone decreasing) if A is well ordered and $F_{\alpha} \supset F_{\beta}$ (resp. $F_{\alpha} \subset F_{\beta}$) for each $\alpha \geq \beta$; $\alpha, \beta \in A$.

²⁾ A topological property P is said to be *weakly hereditary* if every closed subspace of X has the property P whenever X has the property P.