14. A Note on Schütte's Interpolation Theorem

By Nobuyoshi Мотонashi
(Comm. by Kunihiko Kodaira, m. J. A., Feb. 12, 1972)

In this note, we shall add some remarks on Schütte's interpolation theorem in the intuitionistic predicate logic (cf. Schütte [3]), one of which give an affirmative solution of one of open problems in Gabbay [1].

Schütte's interpolation theorem. If $A \supset B$ is provable in the intuitionistic predicate logic, then there is a formula C satisfying the following (1) and (2):
(1) $A \supset C$ and $C \supset B$ are provable in this logic.
(2) Every predicate symbol in C occurs both in A and in B.

We add the following fact to this theorem:
Theorem. In Schütte's theorem above, if A and B are built up using \neg (negation), \wedge (conjunction) and \forall (universal quantification) only, then we can take such a C which satisfies (1), (2) and an added condition (3) :
(3) Every free variable in C occurs both in A and in B.

Remark 1. The proposition obtained from the above theorem by omitting (3) is an affirmative solution of one of open problems in [1].

Remark 2. In Schütte's theorem, we can easily add the condition (3) to C, but in our theorem this is not trivial because we can not apply \exists (existential quantifier) to C.

Let $L J$ be the intuitionistic predicate logic formulated by Gentzen in [2]. For the sake of simplicity we assume that a sequent in $L J$ is of the form $\Gamma \rightarrow \Theta$, where Γ and Θ are finite sets of formulas in $L J$ and Θ has at most one formula, although we shall write $A, \Gamma \rightarrow B$ instead of $\{A\} \cup \Gamma \rightarrow\{B\}$. Furthermore we assume that $L J$ has two propositional constants T (truth), \perp (false) and two added axiom sequents $\rightarrow T$ and $\perp \rightarrow$.

Lemma 1. Let $\Gamma \rightarrow \Theta$ be a sequent in $L J$ and $\left(\Gamma_{1}, \Gamma_{2}\right)$ be an ordered partition of Γ. If $\vdash_{{ }_{J J}} \Gamma \rightarrow \Theta$, then there is a formula C such that
(4) $\vdash^{{ }_{L J}} \Gamma_{1} \rightarrow C$ and $\vdash^{L J} C, \Gamma_{2} \rightarrow \Theta$.
(5) Every predicate symbol in C occurs both in Γ_{1} and $\Gamma_{2} \cup \Theta$.

Furthermore if every formula in $\Gamma \cup \Theta$ is built up using \neg, \wedge, \forall only, then C is also such a formula.
Proof. We use the induction on a cut-free derivation \mathscr{D} of $\Gamma \rightarrow \Theta$. We only treat the case that the last rule of \mathscr{D} is $(\neg \rightarrow)$ or $(\rightarrow \forall)$.

Case 1. The last rule of \mathscr{D} is $(\neg \rightarrow)$. Then \mathscr{D} has the form

